
WOSPi

– a Weather Observation System for the Raspberry Pi –

© Torkel M. Jodalen
annoyingdesigns.com

December 25, 2016

Abstract

This document describes a weather observation system for the Raspberry Pi,
utilizing the Davis Vantage Pro2 Plus/Vantage Pro2/Vantage Vue weather station as
observation platform. The weather station is connected directly to the Raspberry Pi
without using a Davis Instruments data logger. All necessary details, part numbers
and relevant source code samples are provided. The WOSPi software is implemented
using the Python programming language.

Weather data output is provided in various formats (Weather Underground,
weathercloud.net, WindGURU, WindFinder, APRS, XML, plain text file, data
plots) and can be customised according to user requirements.

An example of live weather data from a Vantage Pro2 Plus and a Raspberry Pi
running the WOSPi software can be viewed at http://meteo.annoyingdesigns.

com.

1

http://meteo.annoyingdesigns.com
http://meteo.annoyingdesigns.com

http://meteo.annoyingdesigns.com 2

Contents

Page

1 Project background 6
1.1 Disclaimer . 6
1.2 Main goal . 6

2 The first few steps 7
2.1 A word of warning — console firmware version 3.xx and later 7
2.2 Weather station and ISS installation . 7
2.3 A brief quick-start guide . 8
2.4 Shopping for parts . 9

3 Putting things together 13
3.1 Connecting the VP2P console to a PC — without a data logger 13
3.2 Extending the console’s rear expansion connector 14
3.3 PC-side programming — for those interested 15

4 Configuring the Raspberry Pi 19
4.1 The raspi-config tool . 19
4.2 Manually specifying keyboard layout and locale info 20
4.3 Assigning a static IP address to the Raspberry Pi — cabled ethernet . . . 21
4.4 Assigning a static IP address to the Raspberry Pi — WLAN 22
4.5 Setting a proper host name . 24
4.6 Adding/modifying user accounts . 24

4.6.1 Adding the wospi and wx user accounts 24
4.6.2 Deleting the pi user account . 25

4.7 Updating and installing software packages 26
4.8 Setting up a Python-based FTP server . 27
4.9 Editing the system login message . 28
4.10 Auto-mounting USB-attached storage devices 28
4.11 Setting file system properties . 29
4.12 Disabling kernel serial line output and serial line login 30
4.13 Installing the WOSPi software . 30
4.14 The wxview.sh shell script . 31
4.15 Adding auto-login and changing the default shell for the wx user 32
4.16 Setting up RSA keypairs for ”passwordless” SCP 32
4.17 Enabling auto-run of the wospi.pyc program 33
4.18 Verifying screen output . 33
4.19 Logging screen output to a file . 33

http://meteo.annoyingdesigns.com 3

5 Wiring the Raspberry Pi to the console 34
5.1 General information . 34
5.2 Now you’re warned (again) . 34

6 Sample Python code 37
6.1 Using the serial module . 37
6.2 Using the struct module . 37
6.3 WOSPi’s wxDict and wxMinMax dictionaries 38
6.4 The getRawData function . 38
6.5 MSB or LSB first? . 39
6.6 The CCITT-16 CRC algorithm — Python implementation 39

7 Example output 40
7.1 Weather Underground . 40
7.2 weathercloud.net . 42
7.3 WindGURU . 43
7.4 WindFinder . 44
7.5 Plain-text weather report of current observations 44
7.6 Plain-text min/max report . 44
7.7 Current observations as XML data . 44
7.8 24-hour data plot — wind speed and wind direction 49
7.9 24-hour data plot — temperature, solar/UV radiation, barometric pressure 50
7.10 Last month’s rainfall histogram . 51
7.11 Rainfall per month histogram . 52
7.12 Rainy days per month histogram . 53
7.13 Min/max temperatures from the last 12 months 54
7.14 Daily max solar and max UV radiation from the last 12 months 55
7.15 Daily max solar radiation and temperature from the last 12 months . . . 56
7.16 One week of barometric pressure data . 57
7.17 Weather observations CSV file format . 58
7.18 Rainfall data CSV file format . 59
7.19 APRS weather report . 60
7.20 Terminal output . 60

8 The WOSPi software 61
8.1 Free of charge for non-commercial use . 61
8.2 Credit where credit is due . 61
8.3 Commercial use . 61
8.4 Configuring the WOSPi software . 61
8.5 Configuring the WOSPi software — config.py 61

8.5.1 The COMMISSIONDATE setting 61

http://meteo.annoyingdesigns.com 4

9 Additional notes 62
9.1 Sunrise/sunset times on data plots . 62
9.2 Updating the VP2P/VP2/Vue console time 62
9.3 The condensation flag . 62
9.4 The freeze flag . 62
9.5 Correcting the UV radiation and solar radiation sensor readings 63
9.6 Console RXCHECK values . 63
9.7 Importing the wospi.pyc library . 64
9.8 Regularly running commands at specified times 64
9.9 Choosing a web hotel . 64
9.10 Raspberry Pi HDMI output . 65
9.11 Password-protected websites — the .htaccess file 65
9.12 Backing up weather observations by email — wxBackup.sh 65
9.13 The Raspberry Pi and SD or SDHC cards 66
9.14 SD card backup . 66

9.14.1 Using the Partclone tool . 66
9.14.2 Using dd . 67
9.14.3 Using the Win32 Disk Imager . 67
9.14.4 Resizing the SD card image . 67

9.15 Backing up your files via FTP . 69
9.16 Sentinel values, out-of-range values . 69
9.17 Error messages (IOError, permission denied) 69
9.18 The getBeaufort function . 69
9.19 Undocumented console commands . 71
9.20 Improving the cooling of the Pi Holder case 72
9.21 VP2P and ISS batteries . 73
9.22 gnuplot script files . 73
9.23 External data storage and presentation: ThingSpeak.com, Highcharts.com 74

10 Resources and references 75
10.1 Thanks to ... 75
10.2 Other references . 75

11 Contact information 76
11.1 Comments, suggestions, feature requests, etc. 76

Don’t print it unless you have to!

http://meteo.annoyingdesigns.com 5

1 Project background

The Davis Vantage Pro2 Plus (VP2P) weather station is capable of interfacing to external
devices through its rear extension connector. Davis Instruments Corp. provides various
WeatherLink software products along with their data loggers1, which are capable of
uploadig weather data to a proprietary, subscription-based web server operated by Davis
Instruments Corp. The WeatherLink IP data logger lacks flexibility and doesn’t really
leave the user with any real control of the device. The WeatherLink software itself is
not pretty and it requires a power-consuming personal computer running 24/7 to upload
weather data to the web. With the advent of small, embedded Linux-based systems,
time has certainly come for better solutions than the dated WeatherLink software.

As the serial protocol employed by the VP2P weather station is thoroughly docu-
mented by Davis Instruments Corp.2 and the connector pinout has been documented
by unofficial sources, creating the missing link between the weather station and the in-
ternet is a rather easy task to accomplish — without using a ridiciously expensive data
logger unit. The Raspberry Pi has proven itself as an excellent hardware platform for
the weather observation system.

1.1 Disclaimer

The author assumes no responsibility for your use of information contained in this doc-
ument. Experiment at your own risk. The author does not represent Davis Instruments
Corp. or the Raspberry Pi foundation. Likewise, the author does not have any com-
mercial interests in these organisations. All trademarks remain the property of their
respective holders, and are used only to identify the products mentioned. Their use in
no way indicates any affiliation between the author and the holders of the said trade-
marks.

Note: the Raspbian Jessie LITE image (build 2015-11-21) was used when preparing
this document. Other Raspbian images may require additional customization.

1.2 Main goal

It is my hope that the WOSPi software will be useful and inspire others to experiment
with their VP2P and the Raspberry Pi. You can use the WOSPi software as a standalone
weather observation system or import the desired functions from the wospi module for
use with your own software projects. This PDF file along with the relevant Python
documentation strings provide all the information you need to get going and is also the
author’s own aide-mémoire. Have fun!

1The WOSPi software may be used with a data logger unit, but it will probably be disastrous to
connect the RS-232 data logger directly to the GPIO (P1) header of the Raspberry Pi.

2http://www.davisnet.com/support/weather/downloads/software_dllsdk.asp

http://meteo.annoyingdesigns.com 6

http://www.davisnet.com/support/weather/downloads/software_dllsdk.asp

2 The first few steps

2.1 A word of warning — console firmware version 3.xx and later

The Davis Instruments line of weather stations, including the Vantage Pro2/Vue series,
comes with different firmware versions. It has come to public attention that Davis
Instruments Corp. upgraded their consoles at some time in late 2012. New consoles
are shipping with firmware versions 3.00, 3.12, 3.15 or later. These versions have a
severe drawback compared to earlier versions: they introduce no new functionality, they
address no reliability issues in the v. 1.90 firmware — but they prevent the end-user
from accessing the serial line at the rear extension connector of the console without
purchasing an expensive, original Davis Instruments data logger.

It is a sad situation — Davis Instruments Corp. painting themselves into a corner
when the world is on a move towards open source hardware and open data. Please let
Davis Instruments Corp. know what you think of their move to force users into purchas-
ing expensive data loggers in order to retrieve their very own weather data from their
very own weather station consoles. Davis Instruments Corp. maintains a Facebook page
and they can also be reached by email to support@davisnet.com and telephone (800)
678–3669. Firmware version 3.xx is nothing but a move to force end-users into purchas-
ing proprietary hardware solutions. There are no other reasons why Davis Instruments
Corp. would introduce the ”original logger requirement” for users to access data from
the weather station consoles.

Hopefully, Davis Instruments Corp. will listen to customer feedback and take note of
the problems they introduced in FW version 3.xx (including versions 3.00, 3.12 and 3.15).
Until that happens, users have to deal with the situation themselves — one solution can
be found here: http://meteo.annoyingdesigns.com/DavisSPI.pdf (yes, a ”free my
console” modchip is available for US$ 25 or you can easily program one yourself).

The WOSPi software has been successfully tested with FW version 3.12 on a model
#6312 console, mfg. code A111201xxxx and a chip-modified console running FW v.
3.00, mfg. code AA13020xxxx.

2.2 Weather station and ISS installation

Install the weather station according to the instructions provided. Please pay close
attention to setting the station time, UTC offset, automatic DST adjustment, altitude,
latitude and longitude correctly. The barometer reading should be verified against a
nearby airport with an up-to-date METAR. Rain season should be set to start on the
1st of January. Perform the Clear All command on the console after installing the
integrated sensor suite to clear collected weather data which may contain erroneous
readings after the installation. Refer to the console documentation for a description of
the proper procedure.

http://meteo.annoyingdesigns.com 7

mailto:support@davisnet.com
http://meteo.annoyingdesigns.com/DavisSPI.pdf

2.3 A brief quick-start guide

Please note that the WOSPi system is not ready to run out of the box. A little effort
is required to get the system up running — hopefully with the added benefit of learning
the basics of the Raspberry Pi.

The suggested procedure for putting WOSPi to work is as follows:

• Gather the required parts, refer to section 2.4 for suggestions.

• Configure the Raspberry Pi as described in section 4.

• Carefully wire the VP2P/VP2/Vue console to the Raspberry Pi as detailed in
section 5.

• Download and install WOSPi according to instructions provided in sections 4.13,
8.4 and 8.5.

• If required, ask for help. Section 11 lists the URL of the WOSPi support forum
hosted by Google Groups.

This document contains numerous references to the VP2P console. WOSPi has been
successfully installed and used with VP2 and Vue consoles as well. The console rear-
panel connections remain identical but data recording capabilities differ between the
various console models and firmware versions. Please refer to section 4.13 for details.

The WOSPi software was originally developed for the VP2P, FW versions 1.90,
3.00, 3.12 and 3.15. Using WOSPi with firmware versions prior to v. 1.90 may require
additional customisation. In particular, the baud rate of older consoles is 9600 bps and
the config.py file should be modified accordingly.

Users upgrading from an older version of the WOSPi software should refer to the
revision history (changelog.txt). Upgrades may require changes to the config.py

configuration file as well as other configuration files.

http://meteo.annoyingdesigns.com 8

2.4 Shopping for parts

Company names, prices and part numbers referred to here are valid as of November,
2013.

Davis Vantage Pro2 (Plus) weather station The ”Plus” model includes solar and
UV sensors, but if these are of little or no interest you can just as well start out
with a less expensive model. The solar and UV sensors can be added later, if so
desired. In the US, AmbientWeather (http://www.ambientweather.com) seems
like a good place to start shopping for a weather station. With console FW version
3.xx, be prepared to obtain a modchip in order to unlock the console serial line.

ATtiny85 modchip (OPTIONAL) A modchip is required to unlock the console se-
rial line for new VP2/VP2P/Vue consoles shipped with firmware versions ≥ 3.00.
Available from http://www.annoyingdesigns.com. Cost: US$ 25. Figure 1
refers.

Figure 1: The modchip which shouldn’t really have been necessary.

FT232RL breakout, 3.3V version (OPTIONAL) While not a required part, the
FT232RL breakout from SparkFun Electronics (http://www.sparkfun.com) im-
plements the USB 2.0 protocol and contains a USB to UART IC. This little break-
out board lets you hook up the VP2P console to a PC via a USB port. Also a
very useful part if you intend to update the console firmware. Do not use the 5V
version. Part #BOB-00718. Cost: US$ 15. Figure 2 refers.

Figure 2: The SparkFun FT232RL breakout, 3.3V version.

PowerBASIC Console Compiler (OPTIONAL) While not a required software prod-
uct, this tool (http://www.powerbasic.com) lets you experiment with console
communication from your Windows 7/8/10 PC, and you can even write useful
software. All without the trouble of writing/setting up a GUI. Cost: US$ 89–169.

http://meteo.annoyingdesigns.com 9

http://www.ambientweather.com
http://meteo.annoyingdesigns.com/DavisSPI.pdf
http://www.sparkfun.com
http://www.powerbasic.com

SD card The Raspberry Pi requires a SD card to store the operating system, software
and user files. An 8 GB, class 4 SD card is sufficient, and you can easily prepare
an existing card using the procedure described on the Raspberry Pi website3.
Download and install the Raspbian Jessie LITE image (build 2015-11-21 was used
when preparing this document). Cost: US$ 5–10 or so.

Raspberry Pi It does not matter whether you use the ”old” or the ”new” model of
the Raspberry Pi. Read up on the different models/revisions and their associated
power requirements — the ”low end” models are better suited for projects running
on a tight electrical power budget.

The Raspberry Pi is available from Farnell/Newark and numerous other vendors
(http://www.farnell.com and http://www.newark.com). Cost: US$ 35. Figure
3 refers.

Figure 3: Raspberry Pi 2, model B.

Male/female jumper wires These jumper wires are useful when connecting the VP2P
console to the FT232RL breakout. You may as well throw in a pack of female/fe-
male jumper wires which will come in handy when hooking up the VP2P console
directly to the Raspberry Pi. SparkFun Electronis. Part #PRT-09140. Cost: US$
3.95. Figure 4 refers.

3.5mm (or 6.35mm) stereo phono jacks Using these stereo phono jacks, you’ll get
a handy connection between the VP2P console and the Raspberry Pi for the serial-
line signals (TX, RX and GND). The jacks are available from any electronics store,
as is the extension wire that goes ”in between”. Do not use mono plugs. Cost:
dirt cheap. Figure 5 refers. Note: just about any suitable connectors featuring 3
pins can be used.

USB power supply A 5V micro-USB power supply capable of delivering at least 1A
is required to run the Raspberry Pi. Cost: not very expensive.

3http://www.raspberrypi.org/quick-start-guide

http://meteo.annoyingdesigns.com 10

http://www.farnell.com
http://www.newark.com
http://www.raspberrypi.org/quick-start-guide

Figure 4: Male/female jumper wires.

Figure 5: The 3.5mm stereo phono jacks — only the male version shown here.

Pi Holder (OPTIONAL) Sooner or later, you’ll want a proper case for the Raspberry
Pi. While the Raspberry Pi does not generate a lot of heat, it does get warm.
Go for a proper aluminum case which allows the Raspberry Pi to run cool by
acting as an effective thermal heat sink. In a typcal office environment (room
temperature of 20◦C), the aluminum case temperature will typically remain at
26–32◦C. The Pi Holder is expensive but well worth it. Also refer to section 9.20.
(http://www.piholder.com). Cost: US$ 74.95.

Extension connector, 2mm/20-pos. After a minor modification, this part is ex-
tremely useful to ”elevate” the expansion connector at the rear of the console.
Use a sharp wire cutter to cut it just below the thin plastic spacer. It will then fit
perfectly between the console’s expansion connector and the receptable (see below).
Digi-Key Corp. (http://www.digi-key.com). Part #ESQT-110-02-G-D-760-ND.
Cost: US$ 6.28. Figure 6 refers.

Figure 6: Extension connector, 20mm/20-pos.

http://meteo.annoyingdesigns.com 11

http://www.piholder.com
http://www.digi-key.com

USB memory stick/SD card/SD card reader The USB storage device will be used
to store weather observations — somewhat equivalent to the ”data logger” func-
tionality. The SD card containing the operating system and the WOSPi software
should not be used for this purpose.

Connector, receptable, 2mm/20-pos. Farnell/Newark. Part #FCI-89947-720LF,
Farnell order code 2112423, Newark part #63K1291. Cost: US$ 2.03. Figure
7 refers.

Figure 7: Connector, receptable, 20mm/20-pos.

Ribbon cable, 20 cond. multi, 5’ Digi-Key Corp. Part #AE20B-5-ND. Cost: US$
8.65. Figure 8 refers.

Figure 8: Ribbon cable.

WiFi USB dongle (OPTIONAL) Pick a variant which is known to work with the
Raspberry Pi. Adafruit.com and SparkFun.com are both known to sell add-ons
which work well with the Raspberry Pi. Please note that a WiFi USB dongle
may significantly increase the power requirements of the Raspberry Pi. Cost: US$
10-15. Figure 9 refers.

Figure 9: WiFi USB dongle.

http://meteo.annoyingdesigns.com 12

3 Putting things together

3.1 Connecting the VP2P console to a PC — without a data logger

If you have no intention to experiment using a traditional personal computer, simply skip
this section and move on to section 4. Section 3.2 may still contain relevant information,
though.

Connecting the VP2P console to a PC is by no means required, but it will allow for
experimenting with console communications using familiar terminal emulation software
such as Realterm4. This setup may also be used to update the console firmware. Also,
it will serve as an important first step in programatically decoding the contents of the
LOOP and LOOP2 data packages returned by the console. A few PowerBASIC source
code examples are included here, but this could just as well be implemented using any
other language supporting serial communications and decoding of binary data.

Using the SparkFun FT232RL breakout (3.3V version — do not use the 5V ver-
sion), the weather station can easily be interfaced to a PC running the Windows 7/8/10
operating system. Drivers are also available for MacOS X and Linux.

Figure 10: Wiring diagram between the VP2P console and the SparkFun FT232RL
breakout. The same wiring may also be utilized to update the console firmware. Based
on schematics by DeKay.

Wiring between the VP2P console and the SparkFun USB-to-serial converter requires
three wires:

• TXD0 from the VP2P console goes to RX on the FT232RL

• RXD0 from the VP2P console goes to TX on the FT232RL

• GND from the VP2P console goes to GND on the FT232RL

Using a terminal emulation program such as Realterm, you can now start commu-
nicating with the VP2P console. Please refer to the Serial Communication Reference
Manual, available from the Davis Instruments Corp. website for details.

4http://realterm.sourceforge.net

http://meteo.annoyingdesigns.com 13

http://realterm.sourceforge.net

3.2 Extending the console’s rear expansion connector

Accessing the rear expansion port requires a steady hand. For not-so-steady hands,
adding an extension connector as shown below will make the exercise a bit easier.

Figure 11: Preparing the extension connector.

Figure 12: ”Elevating” the rear expansion port makes it easier to work with. Don’t let
the pins get in close contact with each other.

http://meteo.annoyingdesigns.com 14

3.3 PC-side programming — for those interested

NOTE: jump directly to section 4 if all you care about is getting the WOSPi software
up running.

PC-side programming can be employed to gain a better knowledge and understanding
of the communication protocol. The PowerBASIC Console Compiler (PB/CC) contains
all required functions to facilitate further testing and/or write a complete weather data
retrieval/presentation system for the Win32 platform. Feel free to skip this section, as
it is by no means required for the Raspberry Pi implementation.

The following communication parameters apply:

• 19,200 bps

• 8 data bits

• No parity

• 1 stop bit

• No flow control (XON/XOFF)

Allow the console some time to wake up and respond to commands. Experimenting
will reveal the required delays in program execution after issuing a command to the
console. Note that some commands require slightly longer time to execute on the console.

The LOOP and/or LPS commands are essential when it comes to retrieving weather
station data. Both the LOOP and the LOOP2 packages each consist of 100 bytes, made
up of binary-encoded data provided by the console.

PowerBASIC functions CVWRD (double-byte/word values) and CVBYT (byte values)
are essential for decoding the contents of the LOOP and LOOP2 packages.

http://meteo.annoyingdesigns.com 15

Listing 1: Complete PowerBASIC source code listing: sending the TEST command to
the console and reading the answer.

$COMPORT = "COM3" ' refer to the Windows device manager for COM port number

%DELAY = 100 ' communications delay - 100ms may not be the optimum value

%WKUPDELAY = 1200 ' wakeup delay - according to Davis documentation

DIM F AS LONG ' file number for COM port access

DIM Q AS LONG ' number of bytes waiting in RX queue

DIM S AS STRING ' text from RX queue

F = FREEFILE

COMM SET #F, BAUD = 19200

COMM SET #F, BYTE = 8

COMM SET #F, PARITY = 0

COMM SET #F, STOP = 1

COMM SET #F, XINPFLOW = 0

COMM SET #F, XOUTFLOW = 0

COMM OPEN $COMPORT AS #F CHR=ANSI

COMM RESET #F, FLOW

COMM SEND #F, CHR$ (10) + CHR$ (10) ' wake up the console with 2 x LF

SLEEP(% DELAY)

' check for console response to wakeup call

' if no response , SLEEP(% WKUPDELAY) then perform up to two more

' wakeup calls - ref. Davis documentation

COMM SEND #F, "TEST" + CHR$ (10) ' send the TEST command + LF

SLEEP(% DELAY)

Q = COMM(#F, RXQUE)

COMM RECV #F, Q, S

PRINT S

CLOSE #F

CON.WAITKEY$

http://meteo.annoyingdesigns.com 16

Listing 2: Incomplete PowerBASIC source code example reading the barometric trend
field from the LOOP package using the CVBYT function.

S$ = COMM_SEND (#F, "LOOP 1" + CHR$ (10))

IF LEN(S$) <> 100 THEN

PRINT "ERROR: ONLY " + STR$(LEN(S$)) + " BYTES RECEIVED FROM THE CONSOLE."

BEEP

ELSE

PRINT "RECEIVED 100 BYTES FROM THE CONSOLE. CRC NOT VERIFIED."

LOCAL Q AS LONG

LOCAL BAROTREND AS BYTE

Q = INSTR(S$, "LOO")

BAROTREND = CVBYT(S$, Q+3) ' barometric trend byte is at offset 3

PRINT "BAROMETER TREND : ";

SELECT CASE BAROTREND

CASE -60: PRINT "falling rapidly"

CASE -20: PRINT "falling slowly"

CASE 0: PRINT "steady"

CASE 20: PRINT "rising slowly"

CASE 60: PRINT "rising rapidly"

CASE 196: PRINT "falling rapidly"

CASE 236: PRINT "falling slowly"

CASE ELSE: PRINT "Rev. A or 3hr BARO DATA not available."

END SELECT

END IF

Listing 3: Incomplete PowerBASIC source code example reading the barometric pressure
(inHg units) field from the LOOP package using the CVWRD function. A conversion to
hPa/mb is also shown.

' Assuming that S$ still contains the LOOP package from the previous

' code listing and that Q contains the INSTR result from the same listing.

LOCAL BARO AS DOUBLE

BARO = CVWRD(S$, Q+7) / 1000 ' barometric pressure word is at offset 7

PRINT "BAROMETER : " + STR$(BARO) + " inHg"

PRINT "BAROMETER : " + FORMAT$ (33.8639 * BARO , 5) + " hPa (mb)"

http://meteo.annoyingdesigns.com 17

You may want to carry out a few experiments using the below commands which
should yield easy-to-understand results. Note that the HILOWS, LOOP and LOOP2
packets are binary-encoded — as such, on-screen output will look like a string of random
characters/garbage prefixed by the ”LOO” characters. All commands should be issued
in UPPERCASE LETTERS only. You may want to turn on local echo in the terminal
emulation program. The console first needs a few LF characters to wake up, and all
commands must be terminated with a single LF or CR — not both.

• LAMPS 1 — LCD background illumination ON.

• LAMPS 0 — LCD background illumination OFF.

• LOOP 1 — retrieve one LOOP packet.

• LPS 1 1 — retrieve one LOOP packet, requires console FW version ≥ 1.90.

• LPS 2 1 — retrieve one LOOP2 packet, requires console FW version ≥ 1.90.

• VER — retrieve console firmware date.

• NVER — retrieve console firmware version.

• BARDATA — retrieve barometric calibration data.

• STRMON and STRMOFF — refer to documentation and various web resources.

The Serial Communication Reference Manual as provided by Davis Instruments
Corp. provides further details on the protocol employed by the console. Sooner or
later you will encounter unreasonable readings, communication delays and CRC errors.
Make sure that your code is able to handle these exceptions in a reasonable way. It
is highly recommended to implement the CCITT-16 CRC routine to verify that data
returned by the console is indeed correctly transmitted/received.

When sending data to the console (such as when setting the console date/time based
on the correct time obtained from an NTP server), a valid CRC checksum is required
by the console. Section 6.6 describes a Python-based implementation of the CCITT-16
CRC algorithm.

http://meteo.annoyingdesigns.com 18

4 Configuring the Raspberry Pi

The Raspbian Jessie LITE image can be downloaded from the Raspberry Pi web site5.
If a GUI framework is desired, download the ”full” version instead.

Copying the Raspbian Jessie LITE image onto a SD card is covered in the Quick start
guide on the Raspberry Pi website (keyword for Windows users: Win32DiskImager6).
A working SD card with the Raspbian Jessie LITE Linux distribution is assumed from
here on.

The default password for the pi user is raspberry. The default password for the root
user is not specified. Section 4.6 describes how to set/change the root password.

Proceed by plugging the Raspberry Pi into your router, allowing it to acquire an IP
address via DHCP — or configure the WLAN adapter as detailed in section 4.4. If so
desired, a static IP address may be configured at a later stage.

4.1 The raspi-config tool

When first logging in to the Raspberry Pi, you’ll be greeted by the raspi-config tool.
You can move around using the arrow keys and the TAB key. Activate your choice by
hitting the ENTER key. The raspi-config tool can be started at any time by issuing the
sudo raspi-config command.The following options should be configured:

• Internationalisation options

– Keyboard layout — set according to your desired keyboard layout.

– Locale information — preferably an option containing ”UTF-8”.

– Your timezone.

• Advanced options

– Enable the SSH server7.

– Disable the shell/login and kernel messages over serial line option.

• Do not start the desktop GUI (if at all installed) on boot.

• Require the user to log in.

• Expand the file system to fill the entire SD card.

A reboot will be required to apply the above settings.
Expanding the file system to fill the entire SD card seems to be required when using

the Raspbian Jessie images, as these come with a rather small root partition. Refer to
section 9.14.4 for details on the impact of expanding the file system.

5http://www.raspberrypi.org
6http://sourceforge.net/projects/win32diskimager/
7You may want to download the free PuTTY SSH client to remotely log in to the Raspberry Pi:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html contains what you need

http://meteo.annoyingdesigns.com 19

http://www.raspberrypi.org/
http://sourceforge.net/projects/win32diskimager/
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

4.2 Manually specifying keyboard layout and locale info

NOTE: this step can now be performed using the raspi-config tool. There is really
no reason why you should change these settings manually.

You may need the console-data package — in that case, follow the general install
procedure detailed in section 4.7.

a) sudo nano /etc/default/keyboard — set keyboard layout according to your
preferences.

b) sudo setupcon — select Norwegian/UTF-8, US/UTF-8 or any other setting —
with a strong preference for the UTF-8 variants.

c) sudo dpkg-reconfigure tzdata

d) sudo dpkg-reconfigure locales

At this point it is suitable to restart the Raspberry Pi, using the shutdown -r now

command.

http://meteo.annoyingdesigns.com 20

4.3 Assigning a static IP address to the Raspberry Pi — cabled ethernet

While this step is not required, it makes life a bit easier when you want to log in to your
Raspberry Pi via a network connection.

a) sudo nano /etc/dhcpcd.conf — edit as below:

hostname

clientid

persistent

option ntp_servers

interface eth0

static ip_address=10.0.0.100/24

static routers=10.0.0.1

static domain_name_servers=10.0.0.1

...assuming the that you want to assign the fixed IP address 10.0.0.100 to your
Raspberry Pi and that the router/gateway can be found at IP address 10.0.0.1.
Also, in the above example a netmask of 255.255.255.0 is specified (/24). Other
settings may apply in your network.

b) sudo nano /etc/resolv.conf — edit as below:

domain MyDomain

search MyDomain

nameserver 10.0.0.1

...provided that your router/gateway at IP address 10.0.0.1 also works as a name
server. This may or may not apply in your network. Replace MyDomain with
your local domain name/search list for hostname lookups.

Restart the Raspberry Pi to apply the new settings. If you apply settings which
render the Raspberry Pi without a network connection, you can always log in directly
from a locally attached console8 and change the settings back to their original values.

NOTE: also consider using your internet router’s DHCP server for repeatedly as-
signing the same ”dynamic” IP address to the Raspberry Pi, based on the unit’s
MAC address. In this case, simply leave the Raspberry Pi to obtain a DHCP-issued
IP address — leaving it to the router to always assign the same IP address to the
Raspberry Pi.

8Here referring to a keyboard and a monitor.

http://meteo.annoyingdesigns.com 21

4.4 Assigning a static IP address to the Raspberry Pi — WLAN

NOTE: an easier configuration option is now provided by the WiFi Config tool
found in the GUI (type startx to launch the GUI, if installed) Also refer to the
NOTE in section 4.3.

For WLAN setup, follow the step-by-step instructions as provided in section 4.3, but
edit the /etc/dhcpcd.conf file as follows:

hostname

clientid

persistent

option ntp_servers

interface wlan0

static ip_address=10.0.0.100/24

static routers=10.0.0.1

static domain_name_servers=10.0.0.1

The /etc/wpa supplicant/wpa supplicant.conf file should be updated with your
network-specific settings (replace your SSID and your PSK as appropriate). This exam-
ple will work with with old-style WPA-secured WLAN networks:

ctrl_interface=DIR=/var/run/wpa_supplicant GROUP=netdev

update_config=1

network={

ssid="your_SSID"

psk="your_PSK"

proto=RSN

key_mgmt=WPA-PSK

pairwise=CCMP TKIP

group=CCMP TKIP

}

http://meteo.annoyingdesigns.com 22

The following example will work with WPA2/Personal-secured WLAN networks
(AES):

network={

ssid="your_SSID"

psk="your_PSK"

proto=RSN

key_mgmt=WPA-PSK

pairwise=CCMP

auth_alg=OPEN

}

There are numerous online guides detailing various WLAN setup options for the
Raspberry Pi. The above listings have proved to work, even though they may produce
three ioctl error messages when bringing up the interface. As it seems, these error
messages can be safely ignored.

To activate the WLAN interface after applying the above configuration settings, sim-
ply run sudo ifup wlan0 or restart the Raspberry Pi using sudo shutdown -r now.

http://meteo.annoyingdesigns.com 23

4.5 Setting a proper host name

Typically, you’ll want to set a nice host name (such as ”wx”) for the Raspberry Pi.

a) sudo nano /etc/hostname — this file should only contain the actual host name.

b) sudo nano /etc/hosts — add 127.0.0.1 MyNewHostName where MyNewHost-
name is the host name you specified in the /etc/hostname file above. Other
”shorthand” host names may also be specified here.

c) sudo shutdown -r now — to restart the system.

4.6 Adding/modifying user accounts

You can change the root password by logging in as the pi user and then running the sudo
passwd root command. Your WOSPi system, when fully configured, will typically have
three active user accounts:

root for system setup and system maintenance requiring superuser privileges.

wospi the user account associated with the WOSPi software. The wospi account re-
quires access to the system’s ttyAMA0 device (UART/serial port).

wx the user account which will automatically be logged in on tty6 for output of updated
weather data to a locally attached display (if present).

The passwd command can be used to change password(s). Passwords for the root
and wospi user accounts should be changed at regular intervals.

4.6.1 Adding the wospi and wx user accounts

The wospi user account will be the account running the WOSPi software. Invoke the
following commands:

a) sudo adduser wospi — adding new user wospi. Note the new user ID (UID) for
use with section 4.10.

b) sudo adduser wx — adding new user wx 9.

c) sudo usermod -a -G dialout wospi — adding the wospi user to the dialout
group.

d) sudo visudo — add the wospi user to the /etc/sudoers file, allowing the wospi
user to run sudo. Simply change the old entry for the pi user, replacing pi with
wospi before saving the file.

NOTE: for group affiliation changes to take effect, the wospi user will have to log
out and then log in again. Use the groups command to check which group(s) a user
belongs to.

9Not really required, but if omitted — also skip the instructions provided in sections 4.14 and 4.15.

http://meteo.annoyingdesigns.com 24

4.6.2 Deleting the pi user account

The pi user account serves no purpose in the WOSPi system and should be deleted.
Make sure that you are logged in as the wospi user and invoke the following command:

a) sudo deluser pi --remove-home

http://meteo.annoyingdesigns.com 25

4.7 Updating and installing software packages

Once the Raspberry Pi has proper internet access, additional software packages can be
installed. The LITE version of the Raspbian distribution comes with a ”bare bones”
minimum of software packages preinstalled.

First update the locally stored APT10 package index by running sudo apt-get

update. Also upgrade existing software packages by running sudo apt-get upgrade.
Then install the following packages by running sudo apt-get install followed by

the package name(s) (some of these packages may already have been installed):

• mingetty

• screen

• htop

• python-serial

• python-dateutil

• coreutils

• emacs11

• ftp

• gnuplot

• minicom12

• nmap — not required, but useful to have around.

• zip — not required, but useful to have around.

• ssmtp — not required, but useful for sending email (section 9.12 refers).

• mutt — not required, but useful for sending email and may be used for backup
purposes as detailed in section 9.12.

The above software packages will require some 430 MB of available space on the SD
card (adding to the temporary storage space required during installation).

10Advanced Packaging Tool — simplifies the process of managing software on Unix-like computer
systems by automating the retrieval, configuration and installation of software packages, either from
binary files or by compiling source code.

11Some users will probably prefer other editors. Pick your choice. Nano is referred to throughout
this document only because it is available in the Raspbian Jessie LITE image by default. Please use
whatever editor which suits your preferences. Windows’ Notepad is not an option, though.

12Inside minicom, your best friend will be the Ctrl-A keyboard command.

http://meteo.annoyingdesigns.com 26

4.8 Setting up a Python-based FTP server

A Python-based FTP server is not required, but it will allow for easy and convenient file
transfers between the Raspberry Pi and your desktop/laptop PC — highly recommended
for backup purposes. The FTP server will only be running when explicitly invoked by
the user.

The latest version of pyftpdlib can be found at https://github.com/giampaolo/

pyftpdlib/archive/master.zip. As of December 2014, the current version number is
1.4.0. Here assuming Python version 2.7.x installed on the Raspberry Pi (default on the
SD card image available from the Raspberry Pi website). Issue the following commands:

a) cd ~

b) wget https://github.com/giampaolo/pyftpdlib/archive/master.zip

c) unzip master.zip

d) sudo mv pyftpdlib-master/pyftpdlib /usr/lib/python2.7/pyftpdlib

e) rm -Rf pyftpdlib-master

f) rm master.zip

g) Finally log in as the wospi user and create a Python program in the wospi home
folder containing the FTP server program. A typical implementation is shown
below. NOTE: this file is included in the WOSPi distribution archive.

Listing 4: A Python-based FTP server using the pyftpdlib module.

from pyftpdlib.authorizers import DummyAuthorizer

from pyftpdlib.handlers import FTPHandler

from pyftpdlib.servers import FTPServer

authorizer = DummyAuthorizer ()

authorizer.add_user("Name", "Password", "Path", perm="elradfmw")

handler = FTPHandler

handler.authorizer = authorizer

server = FTPServer (("", 21), handler)

server.serve_forever ()

Replace Name, Password and Path with suitable values as appropriate (wospi, topSe-
cret and /home/wospi could be typical values). Please DO NOT use topSecret as pass-
word — it is shown here as an example only. Also, for security reasons, the password
should not be the same as the login password for the wospi user account.

Whenever FTP access to the system is required, simply start the FTP server by
running sudo python ftpServer.py. Hit Ctrl-C to quit the FTP server program when
it is no longer needed.

http://meteo.annoyingdesigns.com 27

https://github.com/giampaolo/pyftpdlib/archive/master.zip
https://github.com/giampaolo/pyftpdlib/archive/master.zip

4.9 Editing the system login message

The system login message is defined in the /etc/motd file. Running sudo nano /etc/motd

as root allows you to edit the file. A sample file is shown below.

- WOSPi -

- a Weather Observation System for the Raspberry Pi -

- by Torkel M. Jodalen -- tmj@bitwrap.no -

- -

- http://meteo.annoyingdesigns.com -

- -

- Running on hostname 'wx' with static IP 10.0.0.100. -

4.10 Auto-mounting USB-attached storage devices

In order to reduce the number of write operations to the SD card containing the operating
system and the WOSPi software, a USB memory stick or other kind of external storage
device should be utilized for periodically storing weather data. A USB-connected hard
drive could also be used, but would significantly increase the power consumption of the
Raspberry Pi unless powered from an external power source. The standard WOSPi
system will store all weather parameters every ten minutes.

a) sudo mkdir /media/sd — this will be the access path of the device.

b) cd /etc

c) sudo cp fstab fstab.backup — creates a backup copy of the fstab file.

d) ls -l /dev/disk/by-uuid

e) Insert the USB storage device.

f) ls -l /dev/disk/by-uuid — take note of the UUID belonging to the new device.

g) sudo nano /etc/fstab — add the following line:
UUID=xxx /media/sd vfat defaults,auto,noatime,uid=1000 0 0

...where xxx will represent the actual UUID from (f) above. The uid (user ID)
parameter should match the numeric user ID for the wospi user (shown as 1000,
as an example), as listed in the /etc/passwd file (to list the contents of the file,
run the cat /etc/passwd command) and/or noted in section 4.6.1.

h) sudo mount -a — attempt auto-mount of the newly defined device entry.

i) ls -l /media/sd — should list any existing files and folders on the ”new” device.

http://meteo.annoyingdesigns.com 28

4.11 Setting file system properties

The SD card containing the operating system and the WOSPi software should be op-
timized for running 24/7 by reducing the number of write operations to the card. The
following procedure is suggested:

a) sudo dphys-swapfile swapoff — to disable the swap file.

b) Modify the fstab file with the noatime parameter for the ext4 file system —
preventing updates to the ”access time” whenever files are accessed: sudo nano

/etc/fstab. Also, make sure that /var/tmp, /tmp and /var/log are modified
as follows:

tmpfs /var/tmp tmpfs nodev,nosuid,noatime,size=50M 0 0

tmpfs /tmp tmpfs defaults,noatime,nosuid 0 0

tmpfs /var/log tmpfs defaults,noatime,nosuid 0 0

proc /proc proc defaults 0 0

/dev/mmcblk0p1 /boot vfat defaults 0 2

/dev/mmcblk0p2 / ext4 defaults,discard 0 1

UUID=xxx /media/sd vfat defaults,auto,noatime,uid=1000 0 0

The UUID=xxx refers to the UUID of the USB device as described in section
4.10. Replace xxx with an appropriate UUID reference. The uid parameter should
match the user ID of the wospi user — refer to sections 4.6.1 and 4.10 for details.

c) sudo /etc/init.d/rsyslog stop — stop the rsyslog service.

d) sudo rm -Rf /tmp/* — remove everything from the /tmp folder.

e) sudo rm -Rf /var/log/* — remove everything from the /var/log folder.

f) sudo rm /var/tmp/* — remove everything from the /var/tmp folder.

g) sudo mount -a — auto-mount attached devices.

h) sudo /etc/init.d/rsyslog start — restart the rsyslog service.

http://meteo.annoyingdesigns.com 29

4.12 Disabling kernel serial line output and serial line login

NOTE: this step can now be performed using the raspi-config tool.

By default, the system will output kernel status messages to the serial line (at
ttyAMA0). Also, a getty login prompt is normally available on the serial line. As the se-
rial line will be used for communications with the VP2P console, no other input/output
should take place here.

a) sudo systemctl stop serial-getty@ttyAMA0.service

b) sudo systemctl disable serial-getty@ttyAMA0.service

c) To save some time, also refer to section 4.15 now. If you proceed with section 4.15,
do not restart the Raspberry Pi until section 4.14 is also completed.

d) ...otherwise restart the Raspberry Pi for the new settings to take effect.

4.13 Installing the WOSPi software

Download and unpack the WOSPi distribution archive as follows:

a) wget http://www.annoyingdesigns.com/wospi/wospi.zip

b) unzip wospi.zip

c) Refer to the readme.txt file for installation instructions.

d) Refer to the config.py file for configuration options.

NOTE: the WOSPi software comes preconfigured for use with VP2P consoles, ex-
pecting solar radiation and UV radiation readouts.

Refer to the config.py configuration file for details on how to configure WOSPi
for use with consoles which do not supply these radiation values. The plot24.input
file should also be updated.

http://meteo.annoyingdesigns.com 30

4.14 The wxview.sh shell script

If the wx user was added as described in section 4.6.1, the default shell for this user
should be altered to provide weather data output only.

The wxview.sh shell script will be the default shell for the wx user, providing
weather data output on tty6, accessible by pressing Alt-F6 on a locally attached key-
board. The wxview.sh file is included in the wospi distribution archive. If you move
it to the home folder of the wx user, make sure to update file ownership and group
association accordingly (using chown and chgrp).

a) Log in as the wx user and store the this script as /home/wx/wxview.sh by running
nano /home/wx/wxview.sh :

Display weather data output on tty6 (ref. inittab)

User 'wx' will have the default shell set to this script

sed removes HTML formatting and special &xxx; characters

#!/bin/bash

clear

echo 'Weather data will appear here shortly. Please be patient.'

while :

do

if [-f /var/tmp/wxdata.txt]

then

tail -f -n 50 /var/tmp/wxdata.txt |

sed -e 's/&/and/g;s/<[^>]*>//g;s/&[^;]*;/ /g'

fi

sleep 1

done

NOTE: for layout reasons, a line break was inserted above, causing ”sed -e

(...)” to appear on a line by itself. The actual wxview.sh file should be without
this line break. The apostrophe character above (') is ASCII character no. 39. Be
careful to type in the script exactly as shown above.

b) The wxview.sh shell script should be made executable by running the chmod 700

wxview.sh command.

Entering the contents of the wxview.sh file by hand is not recommended. Con-
sider ”copy and paste” instead. Most errors are likely to result in the init: id (x)

respawning too fast error message, effectively denying login for the wx user. Again,
the file is also included in the WOSPi distribution archive — but it needs to be moved
to the home folder of the wx user.

http://meteo.annoyingdesigns.com 31

4.15 Adding auto-login and changing the default shell for the wx user

The wx user account will provide continous weather data output on tty6. Make sure
that the wxview.sh file has been made executable, as detailed in section 4.14.

a) sudo -i

b) mkdir -pv /etc/systemd/system/getty@tty6.service.d

c) nano /etc/systemd/system/getty@tty6.service.d/autologin.conf — edit as
follows:

[Service]

ExecStart=

ExecStart=-/sbin/mingetty --autologin=wx tty6

d) chsh -s /home/wx/wxview.sh wx — change the defaut shell for the wx user.

e) shutdown -r now for a system restart.

4.16 Setting up RSA keypairs for ”passwordless” SCP

The SCP command will normally ask for a password for the remote system. Your system
can be set up to allow for ”passwordless” SCP file transfers. Replace myUserName,
myServer and myHomePath with appropriate values for your system/web hotel.

a) Log in as the wospi user.

b) ssh-keygen — Save the keys in the default location. Do not use a passphrase.

c) cd ~/.ssh

d) scp id rsa.pub myUserName@myServer:myHomePath/.ssh/authorized keys213.
You should be asked for your password to the remote system14.

e) ssh-agent sh -c "ssh-add < /dev/null && bash"

f) echo test > t.txt — for testing.

g) scp t.txt myUserName@myServer:/myHomePath — for testing. You should not
be asked for a password. The file should be copied to the specified server/path.

h) rm t.txt — clean up.

i) Hit Ctrl-D.

13Some systems (incl. MacOS X) use authorized keys instead of authorized keys2.
14This step will overwrite any existing authorized keys2 file on the remote system. Appending the

file may be a better idea, especially if other units or users also require ”passwordless” SCP/SSH access
to the same user account at the remote system.

http://meteo.annoyingdesigns.com 32

4.17 Enabling auto-run of the wospi.pyc program

In order for the WOSPi software to restart after a power failure or an intentional system
reboot, the /etc/rc.local file should be altered slightly:

a) At this stage the wospi user has to be a member of the dialout group, as described
in section 4.6.1.

b) sudo nano /etc/rc.local — add the following line before the line containing
exit 0 :

su - wospi -c

'screen -m -d -S wxscreen /usr/bin/python /home/wospi/wospi.pyc'

NOTE: for layout reasons, a line break was inserted above. The actual rc.local file
should be without this line break. The apostrophe character above (') is ASCII character
no. 39.

4.18 Verifying screen output

As output from the WOSPi software is ”encapsulated” by the screen utility, it cannot
be examined without re-attaching to the screen session. Log in as the wospi user, then
issue the following command(s):

a) screen -R wxscreen — to bring up the last output from the wospi.pyc program.
Depending on conditions, it may take up to 30 seconds until any output appears.
Don’t worry if you notice an error message or two — they occur periodically.

b) To exit screen and leave the wospi.pyc program running, hit Ctrl-A, d to detach
from the present screen session. The wospi.pyc program will keep running in the
background.

c) To exit the wospi.pyc program, hit Ctrl-A, k instead.

The screen utility supports a number of useful command-line options and arguments.
To list active screen sessions, simply issue the screen -ls command.

4.19 Logging screen output to a file

A log file containing output captured by the screen utility can be created by editing the
.screenrc file located in the home folder of the wospi user. If the file does not already
exist, simply create it using a text editor. This can be a useful tool for debugging your
WOSPi installation — but will normally not be required. To conserve memory usage,
consider deleting the accumulated log file from time to time.

logfile /var/log/screen-%S-%n.log

deflog on

http://meteo.annoyingdesigns.com 33

5 Wiring the Raspberry Pi to the console

Byrne’s Law: In any electrical circuit, appliances and wiring will burn
out to protect the fuses. – Robert Byrne

5.1 General information

Wiring between the VP2P console and the Raspberry Pi requires three wires (the TXD15,
RXD16 and GND17 signals). Anything transmitted from the VP2P console should be
received by the Raspberry Pi. Likewise, anything transmitted from the Raspberry Pi
should be received by the VP2P console — explaining the ”crossing” of the TXD and
RXD lines. Both units share the same signal ground reference (GND).

5.2 Now you’re warned (again)

You are proceeding entirely at your own risk. Rest assured, though — no VP2P console,
no BeagleBone and no Raspberry Pi was hurt during the development of the WOSPi
software.

• Be extremely careful not to short any wires/connections.

• Always connect/disconnect the wires without an external DC power supply
connected and without batteries inserted in the VP2P/VP2/Vue console unit.

• Power down the Raspberry Pi and disconnect its power supply before making
the connections to the VP2P/VP2/Vue console.

• Double-check all connections before powering up the devices again.

When attaching the 2mm/20-pos. extension connector to the ribbon cable, make
sure to use a vise in order to apply an even pressure to the connector. Using a tool
which does not apply an even pressure is guaranteed to break the connector.

Using standard 3.5mm (or equally standard 6.35mm) stereo phono connectors as
”interface connectors” between the VP2P console and the Raspberry Pi adds a bit of
flexibility — you can easily mount the VP2P console and the Raspberry Pi at slightly
different locations. Temporarily disconnecting the units is performed in a matter of
seconds. The stereo phono connector has three connection points, perfectly suited for
the TXD, RXD and GND signals. A cable length of up to 3m has been tested without
signs of any problems.

15Transmit Data
16Receive Data
17Ground

http://meteo.annoyingdesigns.com 34

Figure 13: Wiring diagram between the VP2P console and the Raspberry Pi GPIO (P1)
header. Based on schematics by DeKay. The GPIO headers differ somewhat between
the A/B (26 pins, as shown above) and the A+/B+/2B/3 (40 pins, as shown in figure
14) versions of the Raspberry Pi. NOTE: the new Raspberry Pi 3 requires a slightly
different connection thanks to the new, on-board Bluetooth modem.

Figure 14: The ”new” 40-pin GPIO connector. Signals GROUND, UART0 TXD and
UART0 RXD remain easy to locate.

http://meteo.annoyingdesigns.com 35

Figure 15: The Raspberry Pi with the female 3.5mm stereo phono connector attached.
Other connector types may indeed be more suiteable but the phono connectors are fairly
common and easy to get hold of.

Figure 16: The VP2P console with the female 3.5mm stereo phono connector attached,
connected to the Raspberry Pi via an off-the-shelves 3.5mm stereo phono jack cable.

http://meteo.annoyingdesigns.com 36

6 Sample Python code

Sample Python v. 2.7.x code is provided here, to facilitate your experiments with the
Raspberry Pi, Python and the VP2P/VP2/Vue console. WOSPi ’s data extraction is
based on the techniques shown here.

6.1 Using the serial module

First disable all other use of the /dev/ttyAMA0 device, as described in section 4.12.

Listing 5: Python source code example, showing basic use of the serial module. Please
refer to the module documentation for full details, including how to read data from the
serial line.

import serial

WXPORT = '/dev/ttyAMA0 '
WXBAUDRATE = 19200

WXBYTESIZE = serial.EIGHTBITS

WXPARITY = serial.PARITY_NONE

WXSTOPBITS = serial.STOPBITS_ONE

WXXONOFF = False

WXTIMEOUT = 3

w = serial.Serial(WXPORT , WXBAUDRATE , WXBYTESIZE , WXPARITY , WXSTOPBITS , WXTIMEOUT , WXXONOFF)

perform the console wakeup calls here , ref. Davis documentation

w.write('TEST\n')

6.2 Using the struct module

The struct module contains the unpack from function which can be used to decode
the binary-encoded data contained in the LOOP and LOOP2 data packages. The pack

function can be used to encode data going to the VP2P console.
Please refer to the Serial Communication Reference Manual, available from the Davis

Instruments Corp. website for details on the data formats used by the VP2P console.

Listing 6: Python source code example, showing basic use of the struct module.

import struct

Read LOOP and/or LOOP2 packet from the VP2P console , store

the returned result in string s - and go ahead decoding the

binary -encoded values using the struct.unpack_from function

as shown below.

wxDict['BAROTREND '] = struct.unpack_from('B', s, 1)[0]

wxDict['BAROMETER_INHG '] = round(struct.unpack_from('H', s, 5)[0] / 1000.0 , 2)

http://meteo.annoyingdesigns.com 37

6.3 WOSPi’s wxDict and wxMinMax dictionaries

The wxDict dictionary will contain the essential values returned by the VP2P console
using the LOOP and LOOP218 packet formats, provided the data packet CRC checksum
is valid. Some additional key-value-pairs are also included. The wxDict dictionary is
updated twice a minute.

The wxMinMax dictionary will contain the essential min/max values returned by the
VP2P console using the HILOWS packets. It is updated at the interval specified in the
WOSPi configuration file.

Listing 7: Python source code example, showing basic use of the wxDict dictionary.

import wospi

wospi.insertTestData () # OR perform actual console readout

print wospi.wxDict # prints the entire dictionary

print wospi.wxDict['BAROMETER_HPA ']
print wospi.wxMinMax # prints the entire dictionary

NOTE: local copies of these dictionaries are also available to the user-defined func-
tions found in the config.py file. For further details, please refer to the source code
comments.

6.4 The getRawData function

The getRawData function allows users to extract values from received LOOP 1, LOOP 2
and HILOWS data packets. The function will return the requested value from the last
data packet received with a valid checksum. LOOP packets are retrieved twice a minute
and HILOWS packets are retrieved at 10-minute intervals19. The Serial Communication
Reference Manual contains descriptions of the data packet format, including offset and
data size for each variable.

Listing 8: Python source code example, showing use of the getRawData function.

import wospi

wospi.wx = wospi.openWxComm ()

wospi.readWxData () # read LOOP/LOOP2 packet(s), as determined by the LPS setting in config.py

wospi.hiLows () # read HILOWS packet

Note: the wxDict and wxMinMax dictionaries are now populated.

"print wxDict" and/or "print wxMinMax" will display the corresponding dictionary contents.

print wospi.getRawData (1, 9, 'H') # LOOP packet , offset 9, WORD value = inside temperature

print wospi.getRawData (2, 43, 'B') # LOOP2 packet , offset 43, BYTE value = UV index

print wospi.getRawData (1, 18, 'B') # LOOP packet , offset 18, BYTE value = Extra temperature sensor

Note: extra temperature is offset by 90 degrees F - ref. Davis documentation

print wospi.getRawData (1, 62, 'B') # LOOP packet , offset 62, BYTE value = Soil moisture #1 in centibars

The getRawData function is intended for users who need to extract the less common
values from the data packets. Most users will probably be happy to retrieve the values
from the provided dictionaries instead.

18LOOP2 packets are retrieved only if supported and LPS=True is set in the configuration file.
19Unless the interval has been changed in the configuration file.

http://meteo.annoyingdesigns.com 38

6.5 MSB or LSB first?

The VP2P console expects the MSB20 first in the CRC21 checksum. For other values, the
LSB22 is expected as the first bit. Again, refer to the Serial Communication Reference
Manual for details. The struct module can be used with both MSB-first and LSB-first
bit-orders.

6.6 The CCITT-16 CRC algorithm — Python implementation

The CCITT-16 CRC function is shown here, in case you ever need to implement it for
use with your own software. It is available in the wospi module as CRC. You don’t have
to understand it — it works, it works reasonably well, and it has been around and used
extensively in the telecom industry for quite some time.

Listing 9: Python source code, showing the implementation of the CCITT-16 CRC
function.

def CRC(inputData):

"""CCITT -16 CRC implementation , function should return 0"""

crcTab = (\

0x0000 , 0x1021 , 0x2042 , 0x3063 , 0x4084 , 0x50a5 , 0x60c6 , 0x70e7 , \

0x8108 , 0x9129 , 0xa14a , 0xb16b , 0xc18c , 0xd1ad , 0xe1ce , 0xf1ef , \

0x1231 , 0x210 , 0x3273 , 0x2252 , 0x52b5 , 0x4294 , 0x72f7 , 0x62d6 , \

0x9339 , 0x8318 , 0xb37b , 0xa35a , 0xd3bd , 0xc39c , 0xf3ff , 0xe3de , \

0x2462 , 0x3443 , 0x420 , 0x1401 , 0x64e6 , 0x74c7 , 0x44a4 , 0x5485 , \

0xa56a , 0xb54b , 0x8528 , 0x9509 , 0xe5ee , 0xf5cf , 0xc5ac , 0xd58d , \

0x3653 , 0x2672 , 0x1611 , 0x630 , 0x76d7 , 0x66f6 , 0x5695 , 0x46b4 , \

0xb75b , 0xa77a , 0x9719 , 0x8738 , 0xf7df , 0xe7fe , 0xd79d , 0xc7bc , \

0x48c4 , 0x58e5 , 0x6886 , 0x78a7 , 0x840 , 0x1861 , 0x2802 , 0x3823 , \

0xc9cc , 0xd9ed , 0xe98e , 0xf9af , 0x8948 , 0x9969 , 0xa90a , 0xb92b , \

0x5af5 , 0x4ad4 , 0x7ab7 , 0x6a96 , 0x1a71 , 0xa50 , 0x3a33 , 0x2a12 , \

0xdbfd , 0xcbdc , 0xfbbf , 0xeb9e , 0x9b79 , 0x8b58 , 0xbb3b , 0xab1a , \

0x6ca6 , 0x7c87 , 0x4ce4 , 0x5cc5 , 0x2c22 , 0x3c03 , 0xc60 , 0x1c41 , \

0xedae , 0xfd8f , 0xcdec , 0xddcd , 0xad2a , 0xbd0b , 0x8d68 , 0x9d49 , \

0x7e97 , 0x6eb6 , 0x5ed5 , 0x4ef4 , 0x3e13 , 0x2e32 , 0x1e51 , 0xe70 , \

0xff9f , 0xefbe , 0xdfdd , 0xcffc , 0xbf1b , 0xaf3a , 0x9f59 , 0x8f78 , \

0x9188 , 0x81a9 , 0xb1ca , 0xa1eb , 0xd10c , 0xc12d , 0xf14e , 0xe16f , \

0x1080 , 0xa1 , 0x30c2 , 0x20e3 , 0x5004 , 0x4025 , 0x7046 , 0x6067 , \

0x83b9 , 0x9398 , 0xa3fb , 0xb3da , 0xc33d , 0xd31c , 0xe37f , 0xf35e , \

0x2b1 , 0x1290 , 0x22f3 , 0x32d2 , 0x4235 , 0x5214 , 0x6277 , 0x7256 , \

0xb5ea , 0xa5cb , 0x95a8 , 0x8589 , 0xf56e , 0xe54f , 0xd52c , 0xc50d , \

0x34e2 , 0x24c3 , 0x14a0 , 0x481 , 0x7466 , 0x6447 , 0x5424 , 0x4405 , \

0xa7db , 0xb7fa , 0x8799 , 0x97b8 , 0xe75f , 0xf77e , 0xc71d , 0xd73c , \

0x26d3 , 0x36f2 , 0x691 , 0x16b0 , 0x6657 , 0x7676 , 0x4615 , 0x5634 , \

0xd94c , 0xc96d , 0xf90e , 0xe92f , 0x99c8 , 0x89e9 , 0xb98a , 0xa9ab , \

0x5844 , 0x4865 , 0x7806 , 0x6827 , 0x18c0 , 0x8e1 , 0x3882 , 0x28a3 , \

0xcb7d , 0xdb5c , 0xeb3f , 0xfb1e , 0x8bf9 , 0x9bd8 , 0xabbb , 0xbb9a , \

0x4a75 , 0x5a54 , 0x6a37 , 0x7a16 , 0xaf1 , 0x1ad0 , 0x2ab3 , 0x3a92 , \

0xfd2e , 0xed0f , 0xdd6c , 0xcd4d , 0xbdaa , 0xad8b , 0x9de8 , 0x8dc9 , \

0x7c26 , 0x6c07 , 0x5c64 , 0x4c45 , 0x3ca2 , 0x2c83 , 0x1ce0 , 0xcc1 , \

0xef1f , 0xff3e , 0xcf5d , 0xdf7c , 0xaf9b , 0xbfba , 0x8fd9 , 0x9ff8 , \

0x6e17 , 0x7e36 , 0x4e55 , 0x5e74 , 0x2e93 , 0x3eb2 , 0xed1 , 0x1ef0)

crcAcc = 0

for byte in (ord(part) for part in inputData):

ushort = (crcAcc << 8) & 0xff00

crcAcc = ((ushort) ^ crcTab [((crcAcc >> 8) ^ (0xff & byte))])

return crcAcc

20Most Significant Bit
21Cyclic Redundancy Check
22Least Significant Bit

http://meteo.annoyingdesigns.com 39

7 Example output

Sample output from the WOSPi system is provided on the next few pages. Output is
highly customisable — you have full access to all data retrieved from the VP2P console
and you can process the data in any way you like. Observations are stored in plain text
files (including CSV23 and XML24 files), giving you access to most data collected by the
ISS. Only the default VP2P sensors are supported by WOSPi but support for additional
sensors can easily be added by using the getRawData function as described in section
6.4.

Data plots are processed using gnuplot25. Additional plots can be created using
standard gnuplot techniques.

Note that the DATAERROR key in the wxDict dictionary will inhibit output to the
CSV file, Weather Underground, weathercloud.net, WindGURU, WindFinder, APRS,
etc. if set to True. This will only occur if out-of-range sensor values are detected. The
DATAERROR key does not presently cover all values, meaning that end-users should still
be aware of possible out-of-range sensor readings.

7.1 Weather Underground

Uploads to Weather Underground require the LOOP2 packet format, supported by con-
sole firmware versions 1.90 and later. Figures 17 and 18 refer.

Data uploads takes place at the interval specified by the CSVINTERVAL setting.

Figure 17: Weather Underground output — data is uploaded to the wunderground.com
website at 10-minute intervals. This feature requires data from the LOOP2 data packets,
available in console firmware versions 1.90 and later.

23Comma-Separated Values
24Extensible Markup Language
25http://www.gnuplot.info

http://meteo.annoyingdesigns.com 40

http://www.gnuplot.info

Figure 18: Weather Underground output — WOSPi-provided data processed by Weather
Underground, resulting in plots of historical weather data.

http://meteo.annoyingdesigns.com 41

7.2 weathercloud.net

Uploads to weathercloud.net require the LOOP2 packet format, supported by console
firmware versions 1.90 and later. The WC ID and WC KEY options in the config.py

configuration file should either be left empty or contain the weathercloud.net station
ID and access key/password. Once the data has been processed by weathercloud.net, it
will be available for presentation as shown in figure 19. Data uploads take place at the
interval specified by the CSVINTERVAL setting.

Figure 19: weathercloud.net presentation of WOSPi-provided weather data.

New weathercloud.net users should first register with the weathercloud.net service26

and obtain a unique station ID and access key/password. The station ID and access
key/password should then be inserted into the config.py configuration file.

WOSPi users should register their station type as ”Davis WeatherLink” (not the
”Davis WeatherLink/Network” station type) as WOSPi mimics the WeatherLink-interface
during uploads to the weathercloud.net service.

26http://www.weathercloud.net

http://meteo.annoyingdesigns.com 42

http://www.weathercloud.net

7.3 WindGURU

Uploads to WindGURU require the LOOP2 packet format, supported by console firmware
versions 1.90 and later. The WG UID option in the config.py configuration file should
either be left empty or contain the WindGURU station ID (UID). Once the data has
been processed by WindGURU, it will be available for presentation as shown in figure
20. Data uploads takes place at 5-minute intervals as requested by the WindGURU
developers.

Figure 20: WindGURU presentation of WOSPi-provided weather data.

New WindGURU users should first register with the WindGURU service27 and ob-
tain a unique station UID. The station UID should then be inserted into the config.py

configuration file.

27https://stations.windguru.cz/register.php

http://meteo.annoyingdesigns.com 43

https://stations.windguru.cz/register.php

7.4 WindFinder

Uploads to WindFinder require the LOOP2 packet format, supported by console firmware
versions 1.90 and later. The WF StationID and WF Password options in the config.py

configuration file should either be left empty or contain the WindFinder station ID
and the associated password. Data uploads takes place at the interval specified by the
CSVINTERVAL setting.

Figure 21: WindFinder presentation of WOSPi-provided wind data.

7.5 Plain-text weather report of current observations

Figure 22 refers.

7.6 Plain-text min/max report

The min/max textual report contains the min/max values as returned by the console
as well as various console status parameters. Console RXCHECK values are included,
provided they are properly returned by the console. When available, the RXCHECK val-
ues will appear according to the following format: TOT:0, LST:0, RESYNC:0, CONT:0,

CRC:0. If unavailable, ”Not available” will be indicated. Section 9.6 contains additional
details. Figures 23 and 24 refer.

7.7 Current observations as XML data

A simple, XML-like output of the wxDict dictionary is provided by the writeXML func-
tion. The XML file is updated twice a minute. The default filename for the XML file is
wxdata.xml. Listing 10 refers.

http://meteo.annoyingdesigns.com 44

Listing 10: XML-like listing of the wxDict dictionary, as produced by the writeXML

function. The below listing may not be complete and is provided as an example only.

<?xml version="1.0"?>

<wxdata >

<bardata >

OK

BAR 29802

ELEVATION 66

DEW POINT 11

VIRTUAL TEMP 29

C 4

R 1003

BARCAL 0

GAIN 0

OFFSET -30

</bardata >

<avgwind2_mph >5.7</avgwind2_mph >

<solar_w >97</solar_w >

<barometer_inhg >29.8</barometer_inhg >

<avgwind2_msec >2.5</avgwind2_msec >

<stormrain_mm >0.0</stormrain_mm >

<gust10_msec >5.4</gust10_msec >

<inhum_p >22</inhum_p >

<wind_msec >2.2</wind_msec >

<rainfall24h_mm >0.0</rainfall24h_mm >

<dewpoint_f >11.0</dewpoint_f >

<dewpoint_c > -11.7</dewpoint_c >

<batterystatus >0</batterystatus >

<winddir >051</winddir >

<gust10dir >022</gust10dir >

<outhum_p >51</outhum_p >

<et_month_mm >11.3</et_month_mm >

<avgwind10_mph >5.5</avgwind10_mph >

<avgwind10_kts >4.8</avgwind10_kts >

<voltage >4.0</voltage >

<avgwind10_msec >2.5</avgwind10_msec >

<timestamp_pc >2013 -03 -13 12 :34:57 .641141 </timestamp_pc >

<intemp_c >19.7</intemp_c >

<barotrend >0</barotrend >

<intemp_f >67.4</intemp_f >

<rainrate_mmhr >0.0</rainrate_mmhr >

<crc_pad >2567</crc_pad >

<ver>Sep 29 2009 </ver>

<nver>1.90 </nver>

<et_year_mm >23.1</et_year_mm >

<fctext >Increasing clouds with little temperature change.</fctext >

<uvindex >1.4</uvindex >

<stormstart >01.01.1970 </stormstart >

<gust10_mph >12</gust10_mph >

<gust10_kts >10.4</gust10_kts >

<sunset_lt >18:16</sunset_lt >

<wind_kts >4.3</wind_kts >

<wind_mph >5</wind_mph >

<rainfall15_mm >0.0</rainfall15_mm >

<wc_c> -5.6</wc_c>

<fcicon >6</fcicon >

<barotrendtext >Barometric pressure is steady.</barotrendtext >

<wc_f>22.0</wc_f>

<timestamp_aprs >Mar 13 2013 12:34</timestamp_aprs >

<timestamp >13.03.2013 12 :34:54 </timestamp >

<timestamp_wx >Received on 13.03.2013 @ 12 :34:54 local time</timestamp_wx >

<sunrise_lt >06:41</sunrise_lt >

<dayrain_mm >0.0</dayrain_mm >

<monthrain_mm >0.0</monthrain_mm >

<yearrain_mm >0.0</yearrain_mm >

<crc -calc>0</crc -calc>

<rainfall60_mm >0.0</rainfall60_mm >

<outtemp_f >27.5</outtemp_f >

<avgwind2_kts >5.0</avgwind2_kts >

<et_day_mm >0.5</et_day_mm >

<outtemp_c > -2.5</outtemp_c >

<barometer_hpa >1009.1 </barometer_hpa >

<freeze >True</freeze >

<condensation >False</condensation >

<stationmodel >Vantage Pro/Vantage Pro2 (16)</stationmodel >

<dataerror >False</dataerror >

</wxdata >

http://meteo.annoyingdesigns.com 45

Figure 22: Plain-text weather report of current observations, which can easily be em-
bedded on a HTML page. The current weather report is updated twice a minute.

http://meteo.annoyingdesigns.com 46

Figure 23: Plain-text min/max report, by default updated at 10-minute intervals.

http://meteo.annoyingdesigns.com 47

Figure 24: Console status information, included in the plain-text min/max report.

http://meteo.annoyingdesigns.com 48

7.8 24-hour data plot — wind speed and wind direction

Figure 25 refers.

Figure 25: 24-hour data plot showing wind direction, wind speed and wind gust speed.
The plot can be configured for knots & m/sec. or knots & MPH units. Refer to com-
ments embedded in the plot24windL1.input or plot24windL2.input and config.py

files for configuration options.

Configuration details

• gnuplot script file: plot24windL1.input or plot24windL2.input

• resulting output file: wind 24hr.png

• default update interval: 10 minutes

• config.py configuration options:

– CSVINTERVAL

– PLOT24WINDTITLE

– PLOT24WIND (path + file name)

– SCPCOMMAND PLOT24WIND

http://meteo.annoyingdesigns.com 49

7.9 24-hour data plot — temperature, solar/UV radiation, barometric pressure

Figure 26 refers. Temperature can be plotted in ◦C or ◦F. Refer to customisation options
and comments embedded in the plot24.input file.

Figure 26: 24-hour data plot showing temperature (◦C or ◦F), dew point temperature (◦C
or ◦F), relative humidity, solar radiation, UV index and barometric pressure (hPa/mb
or inHg).

Configuration details

• gnuplot script file: plot24.input

• resulting output file: wx 24hr.png

• default update interval: 10 minutes

• config.py configuration options:

– CSVINTERVAL

– PLOT24TITLE

– PLOT24FILE (path + file name)

– SCPCOMMAND PLOT24FILE

http://meteo.annoyingdesigns.com 50

7.10 Last month’s rainfall histogram

Figure 27 refers. Refer to comments embedded in the plotRainMonth.input file for
customisation options. The COMMISSIONDATE setting in the config.py configuration
file should be set according to the instructions provided in section 8.5.1.

Figure 27: Last month’s rainfall data.

Configuration details

• gnuplot script file: plotRainMonth.input

• resulting output file: plotraindays.png

• default update interval: 10 minutes

• config.py configuration options:

– CSVINTERVAL

– COMMISSIONDATE

– PLOTRAINMONTHTITLE

– PLOTRAINMONTH (path + file name)

– SCPCOMMAND PLOTRAINMONTH

– RAINTHRESHOLD MM

– RAINTHRESHOLDTEXT

http://meteo.annoyingdesigns.com 51

7.11 Rainfall per month histogram

Figure 28 refers. Refer to comments embedded in the plotRainPerMonth.input file for
configuration options. The COMMISSIONDATE setting in the config.py configuration file
should be set according to the instructions provided in section 8.5.1.

Figure 28: The monthly rainfall values are read directly from the console and may
include small erroneous rainfall values caused by condensation in the rainfall collector.

Configuration details

• gnuplot script file: plotRainPerMonth.input

• resulting output file: monthlyrain.png

• default update interval: 10 minutes

• config.py configuration options:

– CSVINTERVAL

– COMMISSIONDATE

– PLOTRAINPERMONTHTITLE

– PLOTRAINPERMONTH (path + file name)

– SCPCOMMAND PLOTRAINPERMONTH

– RAINTHRESHOLD MM

– RAINTHRESHOLDTEXT

http://meteo.annoyingdesigns.com 52

7.12 Rainy days per month histogram

Figure 29 refers. The COMMISSIONDATE setting in the config.py configuration file
should be set according to the instructions provided in section 8.5.1.

Figure 29: Number of rainy days per month. The histogram includes data for the last
24 months (provided data is available).

Configuration details

• gnuplot script file: plotRainDaysPerMonth.input

• resulting output file: monthlyraindays.png

• default update interval: 10 minutes

• config.py configuration options:

– CSVINTERVAL

– COMMISSIONDATE

– PLOTRAINDAYSPERMONTHTITLE

– PLOTRAINDAYSPERMONTH (path + file name)

– SCPCOMMAND PLOTRAINDAYSPERMONTH

– RAINTHRESHOLD MM

– RAINTHRESHOLDTEXT

http://meteo.annoyingdesigns.com 53

7.13 Min/max temperatures from the last 12 months

Figure 30 refers. There is normally no need to update the min/max temperature plot
more than once or possibly twice a day. There is a separate Python program named
plotMinMaxTemp.py which should be added to the system’s crontab to achieve this, as
WOSPi will not itself update the min/max temperature plot. Section 9.8 refers.

The temperature values are read from the CSV file as described in section 7.17. There
may as such be slight deviations from the min/max temperature readings reported in
the HILOWS packets.

Figure 30: Minimum and maximum temperature readings for a period of up to 12
months. The background is colored light gray/light blue to indicate temperature readings
above/below the average for the period shown in the data plot.

Configuration details

• gnuplot script file: plotMinMaxTemp.input

• .py program file: plotMinMaxTemp.py

• resulting output file: plotminmax.png

• default update interval: as specified in the system’s crontab

• config.py configuration options:

– PLOTMINMAXTITLE

– PLOTMINMAXTEMP (path + file name)

– SCPCOMMAND PLOTMINMAXTEMP

http://meteo.annoyingdesigns.com 54

7.14 Daily max solar and max UV radiation from the last 12 months

Figure 31 refers. There is normally no need to update the max daily solar/max daily
UV radiation plot more than once a day, preferably in the late afternoon/early evening.
There is a separate Python program named plotSolar.py which should be added to
the system’s crontab to achieve this, as WOSPi will not itself update the max daily
solar/max daily UV radiation plot. Section 9.8 refers.

The radiation values are read from the CSV file as described in section 7.17. There
may as such be slight deviations from the values reported in the HILOWS packets.

Figure 31: Plot of daily maximum solar radiation and UV radiation readings for a
period of up to 12 months. The background is colored light blue/green to indicate solar
radiation readings above/below the average for the period shown in the data plot. The
Bezier approximation of solar radiation readings is included to show the solar radiation
trend — it should be falling towards winter and increasing towards summer.

Configuration details

• gnuplot script file: plotSolar.input

• .py program file: plotSolar.py

• resulting output file: plotsolar.png

• default update interval: as specified in the system’s crontab

• config.py configuration options:

– PLOTSOLARTITLE

– PLOTSOLAR (path + file name)

– SCPCOMMAND PLOTSOLAR

http://meteo.annoyingdesigns.com 55

7.15 Daily max solar radiation and temperature from the last 12 months

Figure 32 refers. There is normally no need to update the max daily temperature/solar
radiation plot more than once a day, preferably in the late afternoon/early evening.
There is a separate Python program named plotTempSolar.py which should be added
to the system’s crontab to achieve this, as WOSPi will not itself update the max daily
temperature/solar radiation plot. Section 9.8 refers.

The temperature and radiation values are read from the CSV file as described in
section 7.17. There may as such be slight deviations from the values reported in the
HILOWS packets. The values are plotted using smoothed Bezier curves.

Figure 32: Plot of daily maximum temperature and solar radiation readings for a period
of up to 12 months. The Bezier approximations of temperature and solar radiation
readings should indicate that ”temperature follows solar radiation”.

Configuration details

• gnuplot script file: plotTempSolar.input

• .py program file: plotTempSolar.py

• resulting output file: plottempsolar.png

• default update interval: as specified in the system’s crontab

• config.py configuration options:

– PLOTTEMPSOLARTITLE

– PLOTTEMPSOLAR (path + file name)

– SCPCOMMAND PLOTTEMPSOLAR

http://meteo.annoyingdesigns.com 56

7.16 One week of barometric pressure data

Figure 33 refers. There is normally no need to update the one-week barometric pressure
plot more than once or possibly twice a day. There is a separate Python program named
plotBaroWeek.py which should be added to the system’s crontab to achieve this, as
WOSPi will not itself update the one-week barometric pressure plot. Section 9.8 refers.

Barometric pressure readings are extracted from the CSV file as described in section
7.17.

Figure 33: Plot of one week of barometric pressure data.

Configuration details

• gnuplot script file: plotBaroWeek.input

• .py program file: plotBaroWeek.py

• resulting output file: baroweek.png

• default update interval: as specified in the system’s crontab

• config.py configuration options:

– PLOTBAROWEEKTITLE

– PLOTBAROWEEK (path + file name)

– SCPCOMMAND PLOTBAROWEEK

http://meteo.annoyingdesigns.com 57

7.17 Weather observations CSV file format

The CSV file stores a complete set of weather observation every 10 minutes (or as
specified by the CSVINTERVAL value in the configuration file). The CSV file can easily
be analyzed by other software (e.g. spreadsheet or database applications). A separate
CSV file contains rainfall data, section 7.18 refers.

Two lines from an actual CSV file are shown below (a few blank lines have been added
for clarity — the actual CSV file has no blank lines in it), each line consists of 17 different
values. Comma (,) is used as field separator, dot (.) is used as decimal separator.
Each line contains one data set (one observation), terminated by the newline/LF (\n)
character.

01.03.2013 00:26:48,3.8,54,-5.0,1016.9,323,1.7,0.0,0,0.0,0.0,0.0,0.0,2.8,2.3,7.0,360

01.03.2013 00:36:56,3.6,55,-5.0,1017.3,325,2.6,0.0,0,0.0,0.0,0.0,0.0,2.2,2.4,5.2,337

A new CSV file is created each month. The file name indicates the year and month
number of the observations, e.g. 2013-03-wxdata.csv for March, 2013. File size at
the end of the month will vary between 250 and 400 kB, depending on the observation
data. The CSV files contain the baseline data used to generate the data plots as shown
in figures 25, 26, 30, 31 and 33.

The CSV data field order is as follows :

1. Timestamp on dd.mm.yyyy HH:MM:SS format

2. Outside air temperature in ◦C

3. Outside relative humidity

4. Outside dew point temperature in ◦C

5. Barometric pressure in hPa/mb

6. Present wind direction

7. Present wind speed in knots

8. UV index in range [0, 16]

9. Solar radiation (watts per m2) in range [0, 1800]

10. Rain rate in mm/hour

11. Daily rain in mm

12. Daily ET in mm

13. Monthly ET in mm

14. 10-minute average wind speed in knots

http://meteo.annoyingdesigns.com 58

15. 2-minute average wind speed in knots

16. 10-minute wind gust speed in knots

17. 10-minute wind gust direction

7.18 Rainfall data CSV file format

Separate CSV files contain daily rainfall values for periods of one month. The rainfall
data files are named yyyy-mm.rain, where yyyy represents the year and mm represents
the month number, e.g. 2013-10.rain.

Comma (,) is used as field separator, dot (.) is used as decimal separator. Each line
contains one data set, terminated by the newline/LF (\n) character.

The rainfail data file is updated at least once a day. To keep the number of write
cycles at a minimum (crucial for flash storage), the file is only updated at the start
of a new day and whenever new values are available throughout the day. Values are
compared, and — if required — updated at 10-minute intervals (or as specified by the
CSVINTERVAL value in the configuration file).

The next generation of WOSPi may store all retrieved data in a single database file.
It is, however, unclear just how write-intensive the various open source database systems
are. As such, CSV file storage is being utilized until further.

The rainfall data file will contain the following entries:

01.10.2013, 0.5, 0.5, 103.2

02.10.2013, 0.5, 1.0, 103,7

...

31.10.2013, 0.0, 42.2, 145.9

The CSV data field order is as follows :

1. Timestamp on dd.mm.yyyy format

2. Daily rainfall in mm

3. Monthly rainfall (from the 1st of the present month) in mm

4. Annual rainfall (refer to section 2.2 for important details) in mm

http://meteo.annoyingdesigns.com 59

7.19 APRS weather report

For use with the APRS28 system, an optional APRS weather report can be generated
at 10-minute intervals. The report will be stored in the /var/tmp/uiview.txt file.
Console firmware version ≥ 1.90 is required to extract data using the LOOP2 packet
format. A typical APRS/UIView weather report file is shown below.

Mar 13 2013 12:59

055/003g013t028r000p000P000h49b10091

7.20 Terminal output

When run from the console, the wospi.pyc program will output a number of status
messages during execution. A typical session is shown in figure 34.

Figure 34: Typical WOSPi terminal output.

28http://www.aprs.org

http://meteo.annoyingdesigns.com 60

http://www.aprs.org

8 The WOSPi software

8.1 Free of charge for non-commercial use

The WOSPi software is available to those interested, for non-commercial use only. Drop
me an email, detailing who you are, where you are and details of your intended use of
the WOSPi software, including the intended URL to your weather site. You will then
receive a download link via email. The source code will not be included. The main
purpose of writing the WOSPi software was self-education and to create an alternative
to the dated WeatherLink software, to be enjoyed by hobbyist weather observers. What
you need to get WOSPi running will always be available free of charge — as long as you
are prepared to put a little effort into making it work.

8.2 Credit where credit is due

As I have spent quite some time writing the software and the documentation, due credit
should be given at any website using data provided by the WOSPi software. Please
keep me informed of your weather site’s URL, so that I can add it to the list of ”other
WOSPi sites” at http://meteo.annoyingdesigns.com.

8.3 Commercial use

Commercial use of the WOSPi software is available by prior agreement only.

8.4 Configuring the WOSPi software

Refer to the included readme.txt file which contains installation instructions.

8.5 Configuring the WOSPi software — config.py

The WOSPi software requires several changes to the default configuration file. Log in as
the wospi user and edit the config.py configuration file. There are numerous comments
in the config.py file, describing the available configuration options.

8.5.1 The COMMISSIONDATE setting

The COMMISSIONDATE setting in the config.py configuration file should be set to in-
dicate the 1st day of the first month of which rainfall data will be available. The date
format is strictly dd.mm.yyyy. Examples:

• Observations started on the 23rd of November, 2013 — set COMMISSIONDATE to
01.11.2013.

• Observations started on the 1st of December, 2013 — set COMMISSIONDATE to
01.12.2013.

The COMMISSIONDATE setting will influence the presentation of rainfall data in the
relevant rainfall data plots.

http://meteo.annoyingdesigns.com 61

9 Additional notes

9.1 Sunrise/sunset times on data plots

The sunrise/sunset times may not display correctly at extreme latitudes. The gnuplot
script files can be edited to remove the sunrise/sunset times entirely. Section 9.22 refers.

9.2 Updating the VP2P/VP2/Vue console time

The Raspberry Pi comes without a real-time clock. As such, it relies on the NTP29

service to set its software-based clock. Clock adjustment is performed automatically
whenever an internet connection is available. It is crucial that the time zone settings are
set correctly. The WOSPi software will attempt to adjust the console’s date/time every
24 hours based on the present time in the Raspberry Pi’s software clock.

Using the NTP service with a correctly configured Raspberry Pi, DST settings are
applied automatically.

9.3 The condensation flag

Under given conditions, an unheated VP2P rain collector will indicate a light rainfall
due to condensation on the rain gauge itself. The textual report of current observations
will indicate this condition. The rainfall values in the wxDict dictionary will contain the
originally recorded rainfall data.

The wxDict[’CONDENSATION’] value will be True in typical condensation condi-
tions. The value is otherwise False. The condensation flag is updated at 10-minute
intervals.

9.4 The freeze flag

An unheated VP2P rain collector will not indicate precipitation in freezing conditions.
The textual report of current observations will indicate this condition. The rainfall
values in the wxDict dictionary will contain the originally recorded rainfall data, should
there be any.

The wxDict[’FREEZE’] value will be True in freezing conditions. The value is oth-
erwise False. The freeze flag is updated at 10-minute intervals.

29Network Time Protocol

http://meteo.annoyingdesigns.com 62

9.5 Correcting the UV radiation and solar radiation sensor readings

The UVCF (UV Correction Factor) and SOLARCF (Solar Correction Factor) settings in
the config.py file can be used to adjust the UV radiation and solar radiation sensor
readings. Values outside the [50, 150] range will be ignored, except for the value 0 which
can be used to indicate that the sensor is not installed/available.

The VP2P ISS manual contains information related to annual adjustment require-
ments for the solar radiation and UV radiation sensors. The adjusted sensor readings
will be stored in the wxDict dictionary and treated as reported sensor values.

Listing 11: Python source code example, showing how to adjust the solar radiation and
UV radiation readings.

UVCF = 100 # retain 100% of the value reported by the UV radiation sensor

SOLARCF = 100 # retain 100% of the value reported by the solar radiation sensor

UVCF = 95 # retain 95% of the value reported by the UV radiation sensor

SOLARCF = 85 # retain 85% of the value reported by the solar radiation sensor

UVCF = 0 # indicates UV radiation sensor not present

SOLARCF = 0 # indicates solar radiation sensor not present

If the UV or solar radiation sensor is not present, it may also be a good idea to
remove the UV and solar radiation graphs by editing the gnuplot script file. Section 9.22
refers.

9.6 Console RXCHECK values

It seems that reported RXCHECK values do not fully match the description in the official
console documentation. The values are supposed to represent, as counted from midnight:

• The total number of packets received by the console.

• Number of lost packets.

• Number of resynchronizations.

• The largest number of packets received in a row.

• Number of detected CRC errors.

It seems that the console randomly refuses to reply to the RXCHECK command. Also,
when first issued, the RXCHECK command seems to reset the packet counters, restarting
all counts from 0. The RXCHECK values, if received from the console, are included in the
min/max report as described in section 7.6.

http://meteo.annoyingdesigns.com 63

9.7 Importing the wospi.pyc library

For use with your own software projects, the wospi.pyc file can be imported into Python
using the ordinary module import technique: import wospi will do the trick. Importing
the library will not start any services. Please note that only one instance of the WOSPi
software should be running at a time.

After importing the wospi.pyc file, use dir(wospi) to get an overview of available
functions, etc. Python documentation strings have been applied throughout, providing
some basic guidance for use with the help function: help(wospi.wxWrite) will display
the documentation string for the wxWrite function. Running help(wospi) will also
yield useful information.

9.8 Regularly running commands at specified times

The Linux distribution included with the Raspberry Pi fully supports crontab. The
WOSPi software does not itself make use of crontab, except for the optional once/twice-
a-day min/max temperature, max daily solar/UV radiation and weekly barometric pres-
sure plotting functions described in sections 7.13, 7.14 and 7.16.

Simply edit the /etc/crontab file by running sudo nano /etc/crontab, adding
the lines as shown in the excerpt below.

In this example, the plotMinMaxTemp.py program is run with the wospi user ID at
00:01 and 12:00 local time — and the wxBackup.sh script is run at 00:01 on the first
day of each month. Similarly, the plotSolar.py program is run with the wospi user ID
at 18:00 local time and the the plotTempSolar.py program is run with the wospi user
ID at 18:03 local time. The plotBaroWeek.py program will run at 00:01 local time.

/etc/crontab: system-wide crontab

Unlike any other crontab you don't have to run the `crontab'

command to install the new version when you edit this file

and files in /etc/cron.d. These files also have username fields,

that none of the other crontabs do.

SHELL=/bin/sh

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin

NOTE: there are already a few lines in the existing crontab file -

you may want to "mute" the output from these lines by adding

>/dev/null 2>&1 after each line

#m h dom mon dow user command

00 12 * * * wospi cd ~ && python plotMinMaxTemp.py >/dev/null 2>&1

00 18 * * * wospi cd ~ && python plotSolar.py >/dev/null 2>&1

03 18 * * * wospi cd ~ && python plotTempSolar.py >/dev/null 2>&1

01 00 * * * wospi cd ~ && python plotMinMaxTemp.py >/dev/null 2>&1

59 23 * * * wospi cd ~ && python plotBaroWeek.py >/dev/null 2>&1

01 00 1 * * wospi ~/wxBackup.sh >/dev/null 2>&1

#

9.9 Choosing a web hotel

Any Linux-based web hotel supporting the SCP30 protocol will do. Domeneshop AS31

is highly recommended.

30Secure Copy
31http://www.domainnameshop.com

http://meteo.annoyingdesigns.com 64

http://www.domainnameshop.com

9.10 Raspberry Pi HDMI output

As the HDMI/video logic of the Raspberry Pi attempts to be half-intelligent, battling
with equally half-intelligent life forms in attached HDMI display equipment, the result
may be a display going into ”power save” mode when no signal is detected at all. This
is very likely to occur if you change from one HDMI display to another. The Raspberry
Pi website contains several relevant articles describing the various HDMI settings which
can be applied.

Editing the /boot/config.txt file, changing a few of the HDMI parameters, will
probably serve as an adequate fix. Edit the file by running sudo nano /boot/config.txt,
then make sure that the following lines are not commented out (edit/delete the # symbol
occuring in the first character position on each of the following lines:

a) hdmi force hotplug=1

b) hdmi group=1

c) hdmi mode=4

Finally restart the Raspberry Pi, power off and then power on the attached display
unit.

9.11 Password-protected websites — the .htaccess file

Only remotely related to the WOSPi software, but users have already asked how to
password protect their website. Suggested reading: http://www.domainnameshop.com/
faq.cgi?id=63.

9.12 Backing up weather observations by email — wxBackup.sh

You may want to backup your weather observations at regular intervals. Using crontab
as shown in section 9.8, weather observations can be emailed to a suitable email account
(e.g. Gmail) for safe storage. Edit the /etc/ssmtp/ssmtp.conf file, inserting the
relevant parameters for your preferred email setup. This example makes use of the
Gmail mail service:

AuthUser=YourUserID@gmail.com

AuthPass=YourPassword

FromLineOverride=YES

MailHub=smtp.gmail.com:587

UseSTARTTLS=YES

The wxBackup.sh shell script should be made executable by running the chmod 700

wxBackup.sh command. Also, the .muttrc configuration file residing in the home
folder of the wospi user should be edited to force the mutt email client to not store
copies of sent email messages. Edit the .muttrc file, inserting the following line:

set copy = no

http://meteo.annoyingdesigns.com 65

http://www.domainnameshop.com/faq.cgi?id=63
http://www.domainnameshop.com/faq.cgi?id=63

9.13 The Raspberry Pi and SD or SDHC cards

The Raspberry Pi website contains several articles and forum posts regarding SD and
SDHC cards which are known to work well with the Raspberry Pi. Although not officially
confirmed, it seems that the ”higher class” (class 6-10) cards have previously caused some
problems. There is still a lot to be said about this topic — but SD cards should not be
trusted as ever-lasting storage devices. Due to the nature of the storage technology used
by SD/SDHC cards, each card will only accept a limited number of write operations.
Remember to make backup copies of your SD cards at regular intervals.

There are several articles available, suggesting recommended practices for making
the Raspberry Pi and SD/SDHC cards more robust for continous 24/7 operation.

9.14 SD card backup

The SD card should be backed up at regular intervals. A backup can be performed using
a number of techniques, including dd and the somewhat more user-friendly Partclone32

tool. Please note that it takes a while to perform a backup (or restore) operation,
depending on system and SD card performance. This procedure may also be applied
should multiple WOSPi installations be desired — properly configure one SD card, then
duplicate it for use with the other installations.

Power down the Raspberry Pi with the sudo halt command, disconnect the power
supply and carefully pull out the SD card. Insert the SD card into a Linux/MacOS X
or Windows computer.

9.14.1 Using the Partclone tool

On Ubuntu systems, start by downloading Partclone by running sudo apt-get install

partclone.
Proceed by installing the Partclone ”wrapper” which can be found at http://www.

raspberrypi.org/phpBB3/download/file.php?id=442. This ”wrapper” will back up
(and restore) the boot partition, the system partition and the MBR33 of the SD card.
In the below listing, /dev/sdb is assumed to be the mount point.

a) Insert the SD card.

b) df -h — provides a listing of mounted drives.

c) dmesg — shows kernel output messages, which may assist in locating the path to
the newly inserted SD card.

d) sudo ./rpi-backup -c -i /dev/sdb -o wospi

e) sudo umount /dev/sdb

32http://www.partclone.org
33Master Boot Record

http://meteo.annoyingdesigns.com 66

http://www.raspberrypi.org/phpBB3/download/file.php?id=442
http://www.raspberrypi.org/phpBB3/download/file.php?id=442
http://www.partclone.org

f) If a restore operation (writing the image to a new SD card) is required, insert the
new SD card and proceed as follows (the operation will fail if there is insufficient
storage capacity on the SD card):

g) sudo ./rpi-restore -i wospi -o /dev/sdb

h) sudo umount /dev/sdb

9.14.2 Using dd

Using dd, it is essential to know where the SD card is mounted. Insert the SD card into
the card reader, then establish where the card is mounted. Below, /dev/sdb is assumed
to be the mount point. It is very likely that it will be a different mount point on a
different system.

a) df -h — provides a listing of mounted drives.

b) dmesg — kernel output messages may assist in locating the path to the newly
inserted SD card.

c) sudo dd if=/dev/sdb of=wospi.img

d) sudo umount /dev/sdb

e) If a restore operation (writing the image to a new SD card) is required, insert the
new SD card and proceed as follows:

f) sudo dd of=/dev/sdb if=image.img bs=512k

NOTE: on MacOS X systems, the SD card will typically be found at /dev/disk1

(for use with the dd command) and /dev/rdisk1 (for use when unmounting the SD
card). Unmounting the SD card should be done using sudo diskutil unmountDisk

disk1 or the GUI-based Disk Utility application (in the Applications/Utilities folder.

NOTE: familiarise yourself with the damage potential of the dd command, as de-
scribed in section 9.14.4.

9.14.3 Using the Win32 Disk Imager

Using the Win32 Disk Imager (for the Windows operating system) is self-explanatory.
Download from http://sourceforge.net/projects/win32diskimager/.

9.14.4 Resizing the SD card image

For technical reasons, an 8 GB SD card isn’t necessarily an 8 GB SD card. It may be
very close to 8 GB, but the exact capacity will vary somewhat between vendors, models
and individual SD cards. Problems will occur if you attempt to restore a backup copy
from a ”big” 8 GB SD card onto a ”smaller” 8 GB SD card.

http://meteo.annoyingdesigns.com 67

http://sourceforge.net/projects/win32diskimager/

The easiest way to avoid this problem is by not using the expand root partition to
fill entire SD card option in the raspi-config tool. If, however, the root partition has
already been expanded to make use of the entire SD card, you can probably34 get away
with this trick (now is the right time to read the NOTE following this listing):

a) Insert the source SD card.

b) Start gparted by running gksudo gparted &

c) Select the /dev/sdb device.

d) Right-click on the /dev/sdb2 (ext4) partition, then select Unmount from the pop-
up menu.

e) Right-click on the /dev/sdb2 (ext4) partition, then select Resize/Move from the
pop-up menu.

f) Reduce the partition size by a few MB (200 MB should do the trick) and apply
this change before quitting gparted.

g) Create an image of the modified SD card by running:
sudo dd if=/dev/sdb of=wospi.img

h) Unmount /dev/sdb1 and /dev/sdb2 by running sudo umount /dev/sdb1 and
sudo umount /dev/sdb2

i) Eject the source SD card and insert the target SD card.

j) Write the image to the target SD card by running:
sudo dd if=wospi.img of=/dev/sdb bs=512k

k) When complete, dd will probably exit with an error message stating that there is
not enough room on the destination disk. This error message can be ignored.

l) Unmount /dev/sdb1 and /dev/sdb2 by running:
sudo umount /dev/sdb and sudo umount /dev/sdb

NOTE: in the above listing, /dev/sdb is assumed to be the location of the SD
card. This may (and probably will) differ on your system. Please note that the dd

command will do a lot of damage to the contents of your disk(s) if used with the wrong
of= argument. You will get no warning if you specify the wrong output destination.
The entire write operation will take a few minutes, and there is no feedback during the
process. Be patient.

34Provided that the SD card isn’t yet filled to capacity with actual data. Still, there is a slight chance
of data loss when using this procedure.

http://meteo.annoyingdesigns.com 68

9.15 Backing up your files via FTP

Apart from copying the entire SD card, you can use FTP to quickly move files between
the Raspberry Pi and other units. Simply start the FTP server on the Raspberry Pi
using the Python-based FTP server described in section 4.8 and use standard FTP
commands to transfer files between the Raspberry Pi and your Linux/Windows/MaxOS
X/Linux/... machine.

For simplicity, consider compressing the entire wospi home folder into one single
archive file: running zip wospi.zip -r * will result in one single file, wospi.zip,
which can easily be transferred via FTP. Utilities gzip and bzip2 may also be used
for the same purpose.

9.16 Sentinel values, out-of-range values

The official Davis documentation for the serial communication protocol now describes
some of the sentinel values used to indicate ”sensor data not available”. Up until March,
2013, this information was not officially available. It seems that extreme-high values
(such as 127 or 255 for a signed/unsigned byte-sized variable and 32767 or 65535 for a
signed/unsigned word -sized variable) indicate ”sensor data not availabe”. The WOSPi
software does not provide filtering of all sentinel values. As such, checking that sensor
readings remain within reasonable ranges remains the responsibility of the programmer.
Indications of out-of-range values can easily be spotted on the 24-hour data plots.

9.17 Error messages (IOError, permission denied)

IOError or Permission denied error messages normally result from the wospi user not
having the adequate permissions for writing to a file or a folder. The situation is typical
for the /media/sd folder (external USB storage device) if it is mounted without giving
the wospi user the required write access privileges. Section 4.10 refers.

9.18 The getBeaufort function

The wospi.pyc library contains function getBeaufort(windSpeedKTS) which will return
a textual representation of the wind speed, given windSpeed in knots. The textual
description can be changed by redefining the 13-element dictionary beaufortText in
the config.py configuration file. The default configuration file contains an example.
Default values are listed in table 1.

http://meteo.annoyingdesigns.com 69

Table 1: Beaufort scale wind descriptions as returned by the getBeaufort function.

Wind speed (knots) Beaufort scale description beaufortText dictionary key

≤ 1 Calm 0
[2, 3] Light air 1
[4, 6] Light breeze 2
[7, 10] Gentle breeze 3
[11, 16] Moderate breeze 4
[17, 21] Fresh breeze 5
[22, 27] Strong breeze 6
[28, 33] Near gale 7
[34, 40] Gale 8
[41, 47] Strong gale 9
[48, 55] Storm 10
[56, 63] Violent storm 11
≥ 64 Hurricane 12

http://meteo.annoyingdesigns.com 70

9.19 Undocumented console commands

The VP2P console supports a number of commands which are not listed in the official
documentation. Please be extremely careful if you start playing around with these
commands.

While you are not likely to break35 anything, you are definitely in for an exciting
evening if you start playing around with stuff while in ”test mode” (TST 1). Most people
have better things to do, unless they happen to stumble across console documentation
which is intended for use by the manufacturer only (in that case, please forward a copy).
A number of the undocumented console commands are listed below:

• ID

• BOOT

• RXTEST

• NEWX

• RX

• TX

• ADREAD

• CLKON

• CLKOFF

• BVER

• POW

• PORT

• LCD

• TST

• XTLCAL

• DUMPREG

• PLLCAL

• DOMAIN

• CHAN

• BAND

• BUZZER

35But it is very likely that your console will suffer from severe schizophrenia afterwards.

http://meteo.annoyingdesigns.com 71

9.20 Improving the cooling of the Pi Holder case

Another step which really isn’t required — but it doesn’t take more than a minute or
two to add a heatsink to the Pi Holder case, effectively decreasing the exterior case
temperature by some 4–5◦C. Figures 35 and 36 refer.

Figure 35: Suggested parts. Cooling ribs from a long-gone Intel Pentium processor,
copper paste and super glue.

Figure 36: Now running even cooler than before. Not better-looking than before, but
functionality does matter.

http://meteo.annoyingdesigns.com 72

9.21 VP2P and ISS batteries

The VP2P console runs on 5V DC from an external power supply capable of deliver-
ing 0.3A (positive center connector) and has a backup power supply consisting of 3 x
1.5V LR14 batteries. The console batteries should be installed and changed at regular
intervals, to aid in data collection whenever a power outage occurs.

ISS backup power is supplied by a 3V lithium battery, type CR1734536. It appears
to be a good idea to replace this battery in late autumn, so that it will last until the
next spring. This observation is based on experience gained in southern Norway, where
daylight during wintertime is so limited that the ISS capacitator will not get a full charge
from the solar panel. Thus, the backup battery will be kicking in to supply power in the
early morning hours. A depleted battery will trigger the battery replacement message
on the console and temporarily inhibit transmission of the solar and UV sensor readings.

9.22 gnuplot script files

The gnuplot script files used to generate the data plots can be found (and edited) in
the home folder of the wospi user. The files are named plotRainPerMonth.input,

plotRainDaysPerMonth.input, plotRainMonth.input, plot24.input,

plotMinMaxTemp.input, plotSolar.input, plotBaroWeek.input,

plotTempSolar.input, plot24windL2.input as well as plot24windL1.input — the
latter for use with consoles not supporting the LPS command. If your station is not
equipped with solar and/or UV sensors, simply adjust the plot24.input file accordingly
to avoid meaningless solar/UV radiation plots.

Embedded comments/notes in the gnuplot *.input files describe various configura-
tion settings, including switching between units such as ◦C and ◦F, hPa/mb and inHg
as well as mm and in.

Wind speed can be plotted either in knots & m/sec. or knots & MPH units. Em-
bedded comments in the plot24windL1.input and plot24windL2.input files describe
this configuration setting.

If you change the location of the temporary files used by WOSPi, as specified in the
config.py configuration file, the gnuplot script files have to be updated accordingly
(not recommended, though).

36Also known as CR123, DL123A, EL CR 123AP, CR123A, K123LA and CR123R.

http://meteo.annoyingdesigns.com 73

9.23 External data storage and presentation: ThingSpeak.com, Highcharts.com

Weather data can be forwarded to online data storage services such as ThingSpeak37 by
means of the following methods:

• The config.py configuration file contains provisions for two user-defined functions
which are invoked at defined intervals. Numerous examples of Python-based data
uploads can easily be found online.

• crontab-invoked scripts reading the WOSPi data file(s), uploading relevant data
fields.

Presentation of weather data can easily be achieved using the Highcharts38 service.
The Highcharts service can retrieve data from storage services such as ThingSpeak. Sev-
eral other options are also available.

37http://www.thingspeak.com
38http://www.highcharts.com

http://meteo.annoyingdesigns.com 74

http://www.thingspeak.com
http://www.highcharts.com

10 Resources and references

10.1 Thanks to ...

The WOSPi software wouldn’t have seen daylight without the inspiring works and posts
by DeKay, published on his http://madscientistlabs.blogspot.no blog. Thank you
for sharing and thank you for allowing me to use your schematics in this document (fig-
ures 10 and 13, respectively).

Davis Instruments Corp. did the right thing when they made the Serial Communi-
cation Reference Manual available for download. Unfortunately, they messed it all
up by shipping near-useless consoles running FW versions 3.00 and 3.12 in late 2012
(...and v. 3.15 in 2013), hiding behind a curtain of silly excuses. Sorry, but none
of your smokescreens are quite capable of disguising the word greed. You still have a
chance to get it right, though. And while you’re at it, please update the Serial Com-
munication Reference Manual to also include descriptions of all the commands sup-
ported by the VP2P console and the ISS unit. For those who cannot wait for Davis
to correct the ”FW version 3 mistake”, this document will probably be of interest:
http://meteo.annoyingdesigns.com/DavisSPI.pdf.

The forums at http://www.wxforum.net represent an indispensable source of infor-
mation. Thanks to everyone in there who shares their knowledge.

10.2 Other references

Documentation for the Python programming language can be found at
http://www.python.org.

For documentation projects exceeding one page of text, LATEX remains the king of doc-
ument preparation systems. Please visit http://www.latex-project.org for further
details.

A gnuplot reference and relevant documentation can be found at
http://www.gnuplot.info.

The Raspberry Pi Foundation’s website contains everything you’ll ever want to know
about the Raspberry Pi: http://www.raspberrypi.org.

http://meteo.annoyingdesigns.com 75

http://madscientistlabs.blogspot.no
http://meteo.annoyingdesigns.com/DavisSPI.pdf
http://www.wxforum.net
http://www.python.org
http://www.latex-project.org
http://www.gnuplot.info
http://www.raspberrypi.org

11 Contact information

Contact information, web address, Google Groups discussion forum, et cetera:

Torkel M. Jodalen
Glassv. 71
NO-1515 Moss
Norway

Email → tmj@bitwrap.no

Web → http://meteo.annoyingdesigns.com

Google Groups → https://groups.google.com/group/wospi?hl=en

(English language only, please).

Please use the Google Groups online discussion forum for any questions related
to the WOSPi software. Free-of-charge end-user support is not available via email
but the online discussion forum is a good place to ask for assistance.

WOSPi is given away for free to non-commercial users. Commercial use is allowed
by prior agreement only. Website owners who utilize WOSPi to publish live weather
data are requested to report their website URL to the author at the above email
address. Thank you.

11.1 Comments, suggestions, feature requests, etc.

...are welcome. But please keep in mind that the WOSPi software was created primarily
as a self-education project and for having a bit of fun with the Raspberry Pi, the VP2P
and LATEX.

Always have the appropriate amount of fun.

http://meteo.annoyingdesigns.com 76

mailto:tmj@bitwrap.no
http://meteo.annoyingdesigns.com
https://groups.google.com/group/wospi?hl=en

http://meteo.annoyingdesigns.com 77

	Project background
	Disclaimer
	Main goal

	The first few steps
	A word of warning — console firmware version 3.xx and later
	Weather station and ISS installation
	A brief quick-start guide
	Shopping for parts

	Putting things together
	Connecting the VP2P console to a PC — without a data logger
	Extending the console's rear expansion connector
	PC-side programming — for those interested

	Configuring the Raspberry Pi
	The raspi-config tool
	Manually specifying keyboard layout and locale info
	Assigning a static IP address to the Raspberry Pi — cabled ethernet
	Assigning a static IP address to the Raspberry Pi — WLAN
	Setting a proper host name
	Adding/modifying user accounts
	Adding the wospi and wx user accounts
	Deleting the pi user account

	Updating and installing software packages
	Setting up a Python-based FTP server
	Editing the system login message
	Auto-mounting USB-attached storage devices
	Setting file system properties
	Disabling kernel serial line output and serial line login
	Installing the WOSPi software
	The wxview.sh shell script
	Adding auto-login and changing the default shell for the wx user
	Setting up RSA keypairs for "passwordless" SCP
	Enabling auto-run of the wospi.pyc program
	Verifying screen output
	Logging screen output to a file

	Wiring the Raspberry Pi to the console
	General information
	Now you're warned (again)

	Sample Python code
	Using the serial module
	Using the struct module
	WOSPi's wxDict and wxMinMax dictionaries
	The getRawData function
	MSB or LSB first?
	The CCITT-16 CRC algorithm — Python implementation

	Example output
	Weather Underground
	weathercloud.net
	WindGURU
	WindFinder
	Plain-text weather report of current observations
	Plain-text min/max report
	Current observations as XML data
	24-hour data plot — wind speed and wind direction
	24-hour data plot — temperature, solar/UV radiation, barometric pressure
	Last month's rainfall histogram
	Rainfall per month histogram
	Rainy days per month histogram
	Min/max temperatures from the last 12 months
	Daily max solar and max UV radiation from the last 12 months
	Daily max solar radiation and temperature from the last 12 months
	One week of barometric pressure data
	Weather observations CSV file format
	Rainfall data CSV file format
	APRS weather report
	Terminal output

	The WOSPi software
	Free of charge for non-commercial use
	Credit where credit is due
	Commercial use
	Configuring the WOSPi software
	Configuring the WOSPi software — config.py
	The COMMISSIONDATE setting

	Additional notes
	Sunrise/sunset times on data plots
	Updating the VP2P/VP2/Vue console time
	The condensation flag
	The freeze flag
	Correcting the UV radiation and solar radiation sensor readings
	Console RXCHECK values
	Importing the wospi.pyc library
	Regularly running commands at specified times
	Choosing a web hotel
	Raspberry Pi HDMI output
	Password-protected websites — the .htaccess file
	Backing up weather observations by email — wxBackup.sh
	The Raspberry Pi and SD or SDHC cards
	SD card backup
	Using the Partclone tool
	Using dd
	Using the Win32 Disk Imager
	Resizing the SD card image

	Backing up your files via FTP
	Sentinel values, out-of-range values
	Error messages (IOError, permission denied)
	The getBeaufort function
	Undocumented console commands
	Improving the cooling of the Pi Holder case
	VP2P and ISS batteries
	gnuplot script files
	External data storage and presentation: ThingSpeak.com, Highcharts.com

	Resources and references
	Thanks to ...
	Other references

	Contact information
	Comments, suggestions, feature requests, etc.

