The Weather at Utsynet
Observations at 16.09.2024 22:33:05 LTOAT 13.8°C · WIND 179° / 3.5 kts · GUST 157° / 5.2 kts · 1028.1 hPa · UV 0.0 · SR 0 WActual Weather Report
--------------------------------------------------------------------------- DATA FROM THE DAVIS VANTAGE PRO2 PLUS/DFARS WEATHER STATION Received on 16.09.2024 @ 22:33:05 local time LOCATION: Jeloy/Moss, Norway (N 59°26' E 010°37' / JO59hk) SUNRISE and SUNSET occur at 06:52 & 19:35 LOCAL TIME --------------------------------------------------------------------------- TEMPERATURE and HUMIDITY Outside Air Temperature ..... : 13.8°C / 56.9°F Heat Index .................. : 13.9°C / 57.0°F Dew Point Temperature ....... : 12.8°C / 55.0°F Relative Humidity ........... : 94 % BAROMETER Barometric Pressure (QNH) ... : 1028.1 hPa / 30.36 inHg Barometric Trend ............ : Barometric pressure is rising slowly. WIND (present and gust: light breeze from S) Present Wind Velocity ....... : 179° at 3.5 kts / 1.8 m/sec. / 4 mph 10-Minute Wind Gust ......... : 157° at 5.2 kts / 2.7 m/sec. / 6 mph Average 2-Minute Wind Speed : 2.0 kts / 1.0 m/sec. / 2.3 mph Average 10-Minute Wind Speed : 2.1 kts / 1.1 m/sec. / 2.4 mph UV INDEX and SOLAR RADIATION UV Index .................... : 0.0 Solar Radiation ............. : 0 watts/m2 RAINFALL Present Rainfall Rate ....... : 0.0 mm / 0.00 in per hour Rainfall Last 24 Hours ...... : 1.4 mm / 0.06 in Rainfall Since Midnight ..... : 1.0 mm / 0.04 in Rainfall Last Rainstorm ..... : 1.4 mm / 0.06 in (from 15.09.2024) Rainfall September .......... : 33.4 mm / 1.31 in Rainfall This Year .......... : 559.0 mm / 22.01 in EVAPOTRANSPIRATION Since Midnight .............. : 1.1 mm / 0.04 in September ................... : 26.8 mm / 1.06 in This Year ................... : 515.2 mm / 20.28 in GENERAL FORECAST Partly cloudy with little temperature change. --------------------------------------------------------------------------- NOTE: Reported rainfall of 0.2 mm / 0.01" may be caused by condensation in the rain collector. --------------------------------------------------------------------------- Data proudly brought to you by WOSPi and a very dedicated Raspberry Pi.
Min/max Values
--------------------------------------------------------------------------- DATA FROM THE DAVIS VANTAGE PRO2 PLUS/DFARS WEATHER STATION Received on 16.09.2024 @ 22:27:42 local time LOCATION: Jeloy/Moss, Norway (N 59°26' E 010°37' / JO59hk) --------------------------------------------------------------------------- TEMPERATURE (Today's MIN @ 08:18 LT, MAX @ 16:38 LT) Today MIN 11.7°C / 53.1°F MAX 16.9°C / 62.4°F September MIN 7.5°C / 45.5°F MAX 26.2°C / 79.2°F This Year MIN -16.3°C / 2.7°F MAX 27.3°C / 81.2°F DEW POINT (Today's MIN @ 04:28 LT, MAX @ 16:38 LT) Today MIN 10.6°C / 51°F MAX 15.0°C / 59°F September MIN 2.8°C / 37°F MAX 20.0°C / 68°F This Year MIN -17.2°C / 1°F MAX 20.0°C / 68°F HUMIDITY (Today's MIN @ 15:22 LT, MAX @ 00:00 LT) Today MIN 84 % MAX 95 % September MIN 44 % MAX 97 % This Year MIN 24 % MAX 97 % BAROMETER (Today's MIN @ 04:04 LT, MAX @ 22:27 LT) Today MIN 1022.0 hPa / 30.18 inHg MAX 1028.1 hPa / 30.36 inHg September MIN 988.5 hPa / 29.19 inHg MAX 1028.4 hPa / 30.37 inHg This Year MIN 962.1 hPa / 28.41 inHg MAX 1041.3 hPa / 30.75 inHg WIND SPEED (Today's MAX @ 14:44 LT) Today MAX 12.2 kts / 14.0 mph / 6.3 m/sec. / Moderate breeze September MAX 33.0 kts / 38.0 mph / 17.0 m/sec. / Near gale This Year MAX 42.6 kts / 49.0 mph / 21.9 m/sec. / Strong gale UV INDEX and SOLAR RADIATION Today MAX UV Index 1.9 @ 14:05 LT MAX SR 538 W/m2 @ 14:06 LT September MAX UV Index 3.0 MAX SR 663 W/m2 This Year MAX UV Index 5.3 MAX SR 1160 W/m2 RAINFALL RATE Today MAX 0.2 mm/hour / 0.01 in/hour at 01:00 LT September MAX 84.8 mm/hour / 3.34 in/hour This Year MAX 174.6 mm/hour / 6.87 in/hour NOTE: The rainfall rate does not indicate long-lasting rainfall at the recorded rate. --------------------------------------------------------------------------- CONSOLE and SYSTEM STATUS INFORMATION Firmware Date ....... : Oct 29 2019 Firmware Version .... : 3.88 ISS Battery Status .. : OK (0) Console Model ....... : Vantage Pro/Vantage Pro2 (16) ID: 6312 Console Voltage ..... : 4.0 Console Temperature . : 22.4°C / 72.3 °F RH: 45 % Console RXCHECK ..... : TOT:174, LST:3, RESYNC:0, CONT:77, CRC:1 Software Version .... : 20240106-RPi System Uptime ....... : Running since Wed Sep 11 08:31:43 2024 LT. 5 day(s), 13 hour(s), 56 minute(s), 6 second(s). Cycle ............... : 12063 RPi SoC Temperature . : 32.6°C Data Packet Format .. : LOOP + LOOP2 --------------------------------------------------------------------------- Data proudly brought to you by WOSPi and a very dedicated Raspberry Pi.
Air Quality and Seismograph
A PurpleAir PA-II Dual Laser Air Quality Sensor is presently in operation. The local air quality index can be checked here.
Seismograph
Raspberry Pi Shake, station R9278.Data Plots and Histograms
The usual click-to-enlarge concept applies. Enlarged images open in new windows.
Note that the update frequency for the data plots varies. Some are updated at 10-minute intervals, others four times a day or only once a day.
System Description
Please keep in mind that WOSPi was conceived way back before the Raspberry Pi was launched.
Originally written for the BeagleBone SoC running the Ångström distribution, there was only a limited
selection of ready-to-run software available. Many of the implementation details of WOSPi reflect this situation.
Weather data is collected using a
Davis Instruments
Vantage Pro2 Plus weather station.
The weather station console is interfaced to a
Raspberry Pi model 1 B running
homemade software which queries the weather station, reads the binary-coded console data
stream and uploads the decoded weather report to an external web server. With a little help
of SED, weather data is also output to a locally attached flatscreen display (normally
switched off, though).
The software on the RPi also stores weather
data on a SD card for later analysis. As such, the system provides functionality
which is equal to or better than the proprietary WeatherLink software available from
Davis Instruments.
There is no Davis Instruments software or hardware involved in extracting weather data
from the Vantage Pro2 Plus weather station, it's all done in my own software, called WOSPi.
That's short for Weather Observation System for the Raspberry Pi.
There is a rather detailed description of the WOSPi software available for download in PDF format. You can download the documentation right here.
The software itself is available, too.
A slideshow presentation of weather data is also available, intented to run continously on a tablet computer.
Davis Instruments made a
design change in 2012, affecting new console units - effectively leaving them
useless without further investments in expensive Davis Instruments hardware.
Luckily, my console is of the old breed (firmware version 1.90), whereas the new firmware (version 3)
which is fitted to new consoles requires an original Davis Instruments data logger
(or an appropriate workaround) in order to start communicating over the serial line. Davis Instruments claims that this design
change was mandated by hardware upgrades. After a bit of effort looking into the details
of what's really going on, it's sad to see that the company is repeatedly serving
lies to its customers. This PDF document may be of particular interest.
Luckily, weather enthusiasts will be able to find other manufacturers of fine weather stations until Davis Instruments changes their business model and allows for
DIY interfaces.
Weather data is forwarded to:
|
|
The Raspberry Pi provides an embedded Linux platform, running on the ARM1176JZFS processor provided by the Broadcom BCM2835 chip. The ARM processor runs steadily at 700 MHz, and the entire thing draws less than 700 mA provided by a 5V USB power supply. Power consumption is minimal and the device is allowed to run H24 (the power requirement for the RPi is 700 mA, whereas the actual power consumption in the present configuration is significantly less). The software was originally developed for the BeagleBone development board (Ångstrøm Linux running on the Texas Instruments ARM Cortex-A8 processor). Stability issues related to corruption of the microSD card proved to be a major concern with the BeagleBone. Even with major modifications to the Ångstrøm distribution, the microSD card became corrupt after a month of operation. | |
The implementation on the BeagleBone/Raspberry Pi was done using the Python programming language, offering much-appreciated degrees of flexibility and structure. Python has proved to be an excellent development platform for this project. Moving from the BeagleBone to the Raspberry Pi only required minor modifications of the program code. | |
From the home network, weather data is transferred to an external web server by means of a fiber-optic connection. | |
Other tools and technologies which have been used extensively during the development of annoyingdesigns.com and back-office subsystems: GNU Emacs, PHP, gnuplot, SED (who can live without it?), CSS and the Debian (RPi) distribution. Code documentation was carried out using Doxygen. Also, the Windows Calculator application (used in "Programmer View") proved to be useful, as did EditPad Pro (no surprise, really - who can stand Notepad for more than a day?). The funniest encounter while working on this project was the CRC calculation used by the Vantage Pro2 weather station, requiring a Python implementation of the CCITT-16 algorithm. And ... these pages should display just fine on any iPhone/iPad. | |
The temperature & humidity sensor was upgraded on September 29, 2016 - to the new Davis part no. 7346.070 featuring the Sensirion SHT31 sensor (PDF, 1 MB) for improved accurancy. | |
The Raspberry Pi with the connections made to the P1 expansion header.
For simplicity, I opted for a 3.5mm stereo phono jack to serve as
connector between the RasPi and the Davis console.
Only three connections are required for simple serial communications: GND, TX and RX.
|
|
Indeed a nice case from Barch Designs.
|
|
The Raspberry Pi in operation, squeezed in below the display.
While a display isn't really required, this one was a nice gift from
my employer - it would have been such a waste to send off a perfectly
operational flatscreen display to the dump. And - yes, there's a
SD card holder, too - for storage of weather data.
|
|
The Davis weather station console is normally left all by itself,
only connected to an external DC power supply and the Raspberry Pi.
The 3.5mm stereo phono jack is hooked up to the expansion connector
at the rear of the console. The phono jack makes it easy to insert
a patch cable between the console and the RPi.
|
|
Oh. SED. Why do so many people ignore your beauty?
|
|
|
Other Weather Resources
- WOSPi documentation (PDF)
- WOSPi downloads
- A fix for the Davis Instruments firmware v. 3.xx problem (PDF)
Weather Data Explained
This section explains the various parameters output by the Davis Vantage Pro2 Plus weather station.
Humidity
Humidity itself simply refers to the amount of water vapor in the air. However, the total amount of water vapor that the air can contain varies with air temperature and pressure. Relative humidity takes into account these factors and offers a humidity reading which reflects the amount of water vapor in the air as a percentage of the amount the air is capable of holding. Relative humidity, therefore, is not actually a measure of the amount of water vapor in the air, but a ratio of the air's water vapor content to its capacity. It is important to realize that relative humidity changes with temperature, pressure, and water vapor content. A parcel of air with a capacity for 10 grams of water vapor which contains 4 grams of water vapor, the relative humidity would be 40%. Adding 2 grams more water vapor (for a total of 6 g) would change the humidity to 60%. If that same parcel of air is then warmed so that it has a capacity for 20 grams of water vapor, the relative humidity drops to 30% even though water vapor content does not change. Relative humidity is an important factor in determining the amount of evaporation from plants and wet surfaces since warm air with low humidity has a large capacity to absorb extra water vapor.Wind Chill
Wind chill (often called wind chill factor) is the felt air temperature on exposed skin due to wind. The wind chill temperature is never higher than the air temperature, and the wind chill is undefined at higher temperatures (above 10°C).THSW Index
The THSW index (temperature/humidity/sun/wind) uses humidity, temperature, sunshine and wind data to calculate an apparent temperature of what it "feels" like out in the sun. The derived temperature is called the THSW index. The THSW index is available when the outside temperature is above 10°C.Dew Point Temperature
Dew point is the temperature to which air must be cooled for saturation (100% relative humidity) to occur, providing there is no change in water vapor content. The dew point is an important measurement used to predict the formation of dew, frost, and fog. If dew point and temperature are close together in the late afternoon when the air begins to turn colder, fog is likely during the night. Dew point is also a good indicator of the air's actual water vapor content, unlike relative humidity, which takes the air's temperature into account. High dew point indicates high water vapor content; low dew point indicates low water vapor content. In addition a high dew point indicates a better chance of rain, severe thunderstorms, and tornados. You can also use dew point to predict the minimum overnight temperature. Provided no new fronts are expected overnight and the afternoon relative humidity is greater than or equal to 50%, the afternoon's dew point gives you an idea of what minimum temperature to expect overnight, since the air can never get colder than the dew point. Dew point is equal to air temperature when humidity = 100%.Rainfall
The Vantage Pro2 incorporates a tipping-bucket rain collector in the sensor suite that measures 0.2 mm of rain for each tip of the bucket. The station logs rain data in the same units it is measured in. Rain rate calculations are based on the interval of time between each bucket tip, which is each 0.2 mm (EU version).Condensation threshold
The construction of the Vantage Pro2 rain collector may cause rainfall readings of 0.2 mm / 0.01" when condensation droplets occur on the surface of the rain collector. The default behavior of the WOSPi software is to filter out rainfall readings below a predefined condensation threshold, typically 0.2 mm / 0.01". As such, typical morning condensation on the rain collector will not increase the count of rainy days per month.Storm rain
Storm rain is the amount of rain in a continous period of rainfall, with an amount of leeway for beginning and end. A rainstorm begins when 0.5 mm of rain has fallen in a 24-hour period, and continues until 24 hours have passed without 0.5 mm of rain.Barometric Pressure
The weight of the air that makes up our atmosphere exerts a pressure on the surface of the earth. This pressure is known as atmospheric pressure. Generally, the more air above an area, the higher the atmospheric pressure. This means that atmospheric pressure changes with altitude. For example, atmospheric pressure is greater at sea level than on a mountaintop. To compensate for this difference and facilitate comparison between locations with different altitudes, atmospheric pressure is generally adjusted ("reduced") to the equivalent sea level pressure. This adjusted pressure is known as barometric pressure. In reality, the Vantage Pro2 Plus weather station measures atmospheric pressure. When you enter your location's altitude into the station parameters, the Vantage Pro2 Plus stores the necessary offset value to consistently translate atmospheric pressure into barometric pressure. Barometric pressure also changes with local weather conditions, making barometric pressure an extremely important and useful weather forecasting tool. High pressure zones are generally associated with fair weather while low pressure zones are generally associated with poor weather. For forecasting purposes, however, the absolute barometric pressure value is generally less important than the change in barometric pressure. In general, rising pressure indicates improving weather conditions while falling pressure indicates deteriorating weather conditions.Barometric Trend
Change rates, as reported by the Vantage Pro2 Plus weather station:PRESSURE CHANGE ACTUAL DESCRIPTION PRESSURE CHANGE RATE Rapidly >= 2.0 hPa / 3 hr Slowly >= 0.7 hPa and < 2.0 hPa / 3 hr
Solar Radiation
What we call "current solar radiation" is technically known as Global Solar Radiation, a measure of the intensity of the sun's radiation reaching a horizontal surface. This irradiance includes both the direct component from the sun and the reflected component from the rest of the sky. The solar radiation reading gives a measure of the amount of solar radiation hitting the solar radiation sensor at any given time, expressed in Watts/sq. meter (W/m2). Sensor range is 0-1800 W/m2.Ultraviolet (UV) Radiation
Energy from the sun reaches the earth as visible, infrared (IR), and ultraviolet (UV) rays. Excessive exposure to UV rays can cause health problems, such as sunburn, skin cancer, skin aging, cataracts, and can suppress the immune system. The Vantage Pro2 Plus helps analyze the changing levels of UV radiation and can advise of situations where exposure is particularly unacceptable. The UV readings do not take into account UV rays reflected off snow, sand, or water, which can significantly increase your total exposure. Nor do your UV readings take into account the dangers of prolonged UV exposure. The readings do not suggest that any amount of exposure is safe or healthful. Do not use the Vantage Pro2 Plus to determine the amount of UV radiation to which you expose yourself. Scientific evidence suggests that UV exposure should be avoided and that even low UV doses can be harmful. The Vantage Pro2 Plus can displays the UV Index, an intensity measurement first defined by Environment Canada and since been adopted by the World Meteorological Organization. UV Index assigns a number between 0 and 16 to the current UV intensity. The US EPA categorizes the Index values as shown in the table below. The lower the number, the lower the danger of sunburn. The Index value published by the U.S. National Weather Service is a forecast of the next day's noontime UV intensity. The index values displayed by the Vantage Pro2 Plus are real-time measurements.NUMERIC VALUE ACTUAL MEANING 0-2 Low UV radiation 3-4 Moderate UV radiation 5-6 High UV radiation 7-9 Very High UV radiation 10+ Extreme UV radiation
Evapotranspiration (ET)
Evapotranspiration (ET) is a measurement of the amount of water vapor returned to the air in a given area. It combines the amount of water vapor returned through evaporation (from wet surfaces) with the amount of water vapor returned through transpiration (exhaling of moisture through plant stomata) to arrive at a total. Effectively, ET is the opposite of rainfall, and it is expressed in the same units of measure (inches or millimeters). The Vantage Pro2 Plus uses air temperature, relative humidity, average wind speed and solar radiation data to estimate ET, which is calculated once an hour, on the hour.Weather Forecast
The Davis forecasting algorithms are based on readings and trends from a single point of reference only. It has no other data from which to draw, hence the forecast will be a best-guess only. The Davis forecasting algorithm is probably an implementation of a slightly modified Zambretti algorithm.Disclaimer
Please keep in mind that annoyingdesigns.com does not provide weather or image data for any professional purposes. As such, it is not recommended to use data from annoyingdesigns.com for crop-critical decisions regarding irrigation planning or anything else which could possibly ruin your day.
You probably get the message - if not, here it is in a different wrapping: you're using data from this system entirely at your own risk. If you are troubled by Davis Instruments Corp. firmware version 3.xx in your Vantage Pro2 or Vue weather station, you may want to consider this easy-to-apply fix.Contact information
Torkel M. Jodalen Tel. (+47) 92 42 20 20